
Journal of Machine Learning Research 9 (2008) 1871-1874 Submitted 5/08; Published 8/08

LIBLINEAR: A Library for Large Linear Classification

Rong-En Fan b90098@csie.ntu.edu.tw

Kai-Wei Chang b92084@csie.ntu.edu.tw

Cho-Jui Hsieh b92085@csie.ntu.edu.tw

Xiang-Rui Wang r95073@csie.ntu.edu.tw

Chih-Jen Lin cjlin@csie.ntu.edu.tw

Department of Computer Science
National Taiwan University
Taipei 106, Taiwan

Editor: Soeren Sonnenburg

Abstract

LIBLINEAR is an open source library for large-scale linear classification. It supports logistic
regression and linear support vector machines. We provide easy-to-use command-line tools
and library calls for users and developers. Comprehensive documents are available for both
beginners and advanced users. Experiments demonstrate that LIBLINEAR is very efficient
on large sparse data sets.
Keywords: large-scale linear classification, logistic regression, support vector machines,
open source, machine learning

1. Introduction

Solving large-scale classification problems is crucial in many applications such as text clas-
sification. Linear classification has become one of the most promising learning techniques
for large sparse data with a huge number of instances and features. We develop LIBLINEAR
as an easy-to-use tool to deal with such data. It supports L2-regularized logistic regression
(LR), L2-loss and L1-loss linear support vector machines (SVMs) (Boser et al., 1992). It
inherits many features of the popular SVM library LIBSVM (Chang and Lin, 2001) such as
simple usage, rich documentation, and open source license (the BSD license1). LIBLINEAR
is very efficient for training large-scale problems. For example, it takes only several seconds
to train a text classification problem from the Reuters Corpus Volume 1 (rcv1) that has more
than 600,000 examples. For the same task, a general SVM solver such as LIBSVM would
take several hours. Moreover, LIBLINEAR is competitive with or even faster than state of the
art linear classifiers such as Pegasos (Shalev-Shwartz et al., 2007) and SVMperf (Joachims,
2006). The software is available at http://www.csie.ntu.edu.tw/~cjlin/liblinear.

This article is organized as follows. In Sections 2 and 3, we discuss the design and
implementation of LIBLINEAR. We show the performance comparisons in Section 4. Closing
remarks are in Section 5.

1. The New BSD license approved by the Open Source Initiative.

c©2008 Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang and Chih-Jen Lin.

http://www.csie.ntu.edu.tw/~cjlin/liblinear

Fan, Chang, Hsieh, Wang and Lin

2. Large Linear Classification (Binary and Multi-class)

LIBLINEAR supports two popular binary linear classifiers: LR and linear SVM. Given a set
of instance-label pairs (xi, yi), i = 1, . . . , l, xi ∈ Rn, yi ∈ {−1,+1}, both methods solve the
following unconstrained optimization problem with different loss functions ξ(w;xi, yi):

min
w

1
2
wTw + C

∑l

i=1
ξ(w;xi, yi), (1)

where C > 0 is a penalty parameter. For SVM, the two common loss functions are max(1−
yiw

Txi, 0) and max(1−yiwTxi, 0)2. The former is referred to as L1-SVM, while the latter is
L2-SVM. For LR, the loss function is log(1+e−yiw

Txi), which is derived from a probabilistic
model. In some cases, the discriminant function of the classifier includes a bias term, b.
LIBLINEAR handles this term by augmenting the vector w and each instance xi with an
additional dimension: wT ← [wT , b],xTi ← [xTi , B], where B is a constant specified by
the user. The approach for L1-SVM and L2-SVM is a coordinate descent method (Hsieh
et al., 2008). For LR and also L2-SVM, LIBLINEAR implements a trust region Newton
method (Lin et al., 2008). The Appendix of our SVM guide.2 discusses when to use which
method. In the testing phase, we predict a data point x as positive if wTx > 0, and
negative otherwise. For multi-class problems, we implement the one-vs-the-rest strategy
and a method by Crammer and Singer. Details are in Keerthi et al. (2008).

3. The Software Package

The LIBLINEAR package includes a library and command-line tools for the learning task.
The design is highly inspired by the LIBSVM package. They share similar usage as well as
application program interfaces (APIs), so users/developers can easily use both packages.
However, their models after training are quite different (in particular, LIBLINEAR stores w
in the model, but LIBSVM does not.). Because of such differences, we decide not to combine
these two packages together. In this section, we show various aspects of LIBLINEAR.

3.1 Practical Usage

To illustrate the training and testing procedure, we take the data set news20,3 which has
more than one million features. We use the default classifier L2-SVM.

$ train news20.binary.tr
[output skipped]
$ predict news20.binary.t news20.binary.tr.model prediction
Accuracy = 96.575% (3863/4000)

The whole procedure (training and testing) takes less than 15 seconds on a modern com-
puter. The training time without including disk I/O is less than one second. Beyond this
simple way of running LIBLINEAR, several parameters are available for advanced use. For
example, one may specify a parameter to obtain probability outputs for logistic regression.
Details can be found in the README file.
2. The guide can be found at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
3. This is the news20.binary set from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets. We

use a 80/20 split for training and testing.

1872

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

LIBLINEAR: A Library for Large Linear Classification

3.2 Documentation

The LIBLINEAR package comes with plenty of documentation. The README file describes the
installation process, command-line usage, and the library calls. Users can read the “Quick
Start” section, and begin within a few minutes. For developers who use LIBLINEAR in their
software, the API document is in the “Library Usage” section. All the interface functions
and related data structures are explained in detail. Programs train.c and predict.c are
good examples of using LIBLINEAR APIs. If the README file does not give the information
users want, they can check the online FAQ page.4 In addition to software documentation,
theoretical properties of the algorithms and comparisons to other methods are in Lin et al.
(2008) and Hsieh et al. (2008). The authors are also willing to answer any further questions.

3.3 Design

The main design principle is to keep the whole package as simple as possible while making
the source codes easy to read and maintain. Files in LIBLINEAR can be separated into
source files, pre-built binaries, documentation, and language bindings. All source codes
follow the C/C++ standard, and there is no dependency on external libraries. Therefore,
LIBLINEAR can run on almost every platform. We provide a simple Makefile to compile
the package from source codes. For Windows users, we include pre-built binaries.

Library calls are implemented in the file linear.cpp. The train() function trains a
classifier on the given data and the predict() function predicts a given instance. To handle
multi-class problems via the one-vs-the-rest strategy, train() conducts several binary clas-
sifications, each of which is by calling the train one() function. train one() then invokes
the solver of users’ choice. Implementations follow the algorithm descriptions in Lin et al.
(2008) and Hsieh et al. (2008). As LIBLINEAR is written in a modular way, a new solver
can be easily plugged in. This makes LIBLINEAR not only a machine learning tool but also
an experimental platform.

Making extensions of LIBLINEAR to languages other than C/C++ is easy. Following
the same setting of the LIBSVM MATLAB/Octave interface, we have a MATLAB/Octave
extension available within the package. Many tools designed for LIBSVM can be reused with
small modifications. Some examples are the parameter selection tool and the data format
checking tool.

4. Comparison

Due to space limitation, we skip here the full details, which are in Lin et al. (2008) and Hsieh
et al. (2008). We only demonstrate that LIBLINEAR quickly reaches the testing accuracy
corresponding to the optimal solution of (1). We conduct five-fold cross validation to select
the best parameter C for each learning method (L1-SVM, L2-SVM, LR); then we train on
the whole training set and predict the testing set. Figure 1 shows the comparison between
LIBLINEAR and two state of the art L1-SVM solvers: Pegasos (Shalev-Shwartz et al., 2007)
and SVMperf (Joachims, 2006). Clearly, LIBLINEAR is efficient.

To make the comparison reproducible, codes used for experiments in Lin et al. (2008)
and Hsieh et al. (2008) are available at the LIBLINEAR web page.

4. FAQ can be found at http://www.csie.ntu.edu.tw/~cjlin/liblinear/FAQ.html.

1873

http://www.csie.ntu.edu.tw/~cjlin/liblinear/FAQ.html

Fan, Chang, Hsieh, Wang and Lin

(a) news20, l: 19,996, n: 1,355,191, #nz: 9,097,916 (b) rcv1, l: 677,399, n: 47,236, #nz: 156,436,656

Figure 1: Testing accuracy versus training time (in seconds). Data statistics are listed after
the data set name. l: number of instances, n: number of features, #nz: number
of nonzero feature values. We split each set to 4/5 training and 1/5 testing.

5. Conclusions

LIBLINEAR is a simple and easy-to-use open source package for large linear classification.
Experiments and analysis in Lin et al. (2008), Hsieh et al. (2008) and Keerthi et al. (2008)
conclude that solvers in LIBLINEAR perform well in practice and have good theoretical
properties. LIBLINEAR is still being improved by new research results and suggestions from
users. The ultimate goal is to make easy learning with huge data possible.

References

B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers.
In COLT, 1992.

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate
descent method for large-scale linear SVM. In ICML, 2008.

T. Joachims. Training linear SVMs in linear time. In ACM KDD, 2006.

S. S. Keerthi, S. Sundararajan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. A sequential dual
method for large scale multi-class linear SVMs. In ACM KDD, 2008.

C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region Newton method for large-scale
logistic regression. JMLR, 9:627–650, 2008.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: primal estimated sub-gradient solver
for SVM. In ICML, 2007.

1874

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Acknowledgments

This work was supported in part by the National Science Council of Taiwan via the grant
NSC 95-2221-E-002-205-MY3.

Appendix: Implementation Details

Appendix A. Formulations

This section briefly describes classifiers supported in LIBLINEAR. Given training vectors
xi ∈ Rn, i = 1, . . . , l in two class, and a vector y ∈ Rl such that yi = {1,−1}, a linear
classifier generates a weight vector w as the model. The decision function is

sgn
(
wTx

)
.

LIBLINEAR allows the classifier to include a bias term b. See Section 2 for details.

A.1 L2-regularized L1- and L2-loss Support Vector Classification

L2-regularized L1-loss SVC solves the following primal problem:

min
w

1
2
wTw + C

l∑
i=1

(max(0, 1− yiwTxi)),

whereas L2-regularized L2-loss SVC solves the following primal problem:

min
w

1
2
wTw + C

l∑
i=1

(max(0, 1− yiwTxi))2. (2)

Their dual forms are:

min
α

1
2
αT Q̄α− eTα

subject to 0 ≤ αi ≤ U, i = 1, . . . , l.

where e is the vector of all ones, Q̄ = Q+D, D is a diagonal matrix, and Qij = yiyjx
T
i xj .

For L1-loss SVC, U = C and Dii = 0, ∀i. For L2-loss SVC, U =∞ and Dii = 1/(2C), ∀i.

A.2 L2-regularized Logistic Regression

L2-regularized LR solves the following unconstrained optimization problem:

min
w

1
2
wTw + C

l∑
i=1

log(1 + e−yiw
Txi). (3)

A.3 L1-regularized L2-loss Support Vector Classification

L1 regularization generates a sparse solution w. L1-regularized L2-loss SVC solves the
following primal problem:

min
w

‖w‖1 + C

l∑
i=1

(max(0, 1− yiwTxi))2. (4)

where ‖ · ‖1 denotes the 1-norm.

A.4 L1-regularized Logistic Regression

L1-regularized LR solves the following unconstrained optimization problem:

min
w

‖w‖1 + C
l∑

i=1

log(1 + e−yiw
Txi). (5)

where ‖ · ‖1 denotes the 1-norm.

Appendix B. L2-regularized L1- and L2-loss SVM (Solving Dual)

See Hsieh et al. (2008) for details of a dual coordinate descent method.

Appendix C. L2-regularized Logistic Regression (Solving Primal)

See Lin et al. (2008) for details of a trust region Newton method.

Appendix D. L2-regularized L2-loss SVM (Solving Primal)

The algorithm is the same as the trust region Newton method for logistic regression (Lin
et al., 2008). The only difference is the formulas of gradient and Hessian-vector products.
We list them here.

The objective function is in (2). Its gradient is

w + 2CXT
I,:(XI,:w − yI), (6)

where I ≡ {i | 1− yiwTxi > 0} is an index set, y = [y1, . . . , yl]T , and X =

x
T
1
...
xTl

.

Eq. (2) is differentiable but not twice differentiable. To apply the Newton method, we
consider the following generalized Hessian of (2):

I + 2CXTDX = I + 2CXT
I,:DI,IXI,:, (7)

where I is the identity matrix and D is a diagonal matrix with the following diagonal
elements:

Dii =

{
1 if 1− yiwTxi > 0,
0 if 1− yiwTxi ≤ 0.

The Hessian-vector product between the generalized Hessian and a vector s is:

s+ 2CXT
I,: (DI,I (XI,:s)) . (8)

Appendix E. Multi-class SVM by Crammer and Singer

Keerthi et al. (2008) extend the coordinate descent method to a sequential dual method
for a multi-class SVM formulation by Crammer and Singer. However, our implementation
is slightly different from the one in Keerthi et al. (2008). In the following sections, we
describe the formulation and the implementation details, including the stopping condition
(Appendix E.4) and the shrinking strategy (Appendix E.5).

E.1 Formulations

Given a set of instance-label pairs (xi, yi), i = 1, . . . , l,xi ∈ Rn, yi ∈ {1, . . . , k}, Crammer
and Singer (2000) proposed a multi-class approach by solving the following optimization
problem:

min
wm,ξi

1
2

k∑
m=1

wT
mwm + C

l∑
i=1

ξi

subject to wT
yi
xi −wT

mxi ≥ emi − ξi, i = 1, . . . , l, (9)

where

emi =

{
0 if yi = m,

1 if yi 6= m.

The decision function is
arg max

m=1,...,k
wT
mx.

The dual of (9) is:

min
α

1
2

k∑
m=1

‖wm‖2 +
l∑

i=1

k∑
m=1

emi α
m
i

subject to
k∑

m=1

αmi = 0,∀i = 1, . . . , l (10)

αmi ≤ Cmyi
,∀i = 1, . . . , l,m = 1, . . . , k,

where

wm =
l∑

i=1

αmi xi, ∀m, α = [α1
1, . . . , α

k
1 , . . . , α

1
l , . . . , α

k
l]
T . (11)

and

Cmyi
=

{
0 if yi 6= m,

C if yi = m.
(12)

Recently, Keerthi et al. (2008) proposed a sequential dual method to efficiently solve
(10). Our implementation is based on this paper. The main differences are the sub-problem
solver and the shrinking strategy.

E.2 The Sequential Dual Method for (10)

The optimization problem (10) has kl variables, which are very large. Therefore, we extend
the coordinate descent method to decomposes α into blocks [ᾱ1, . . . , ᾱl], where

ᾱi = [α1
i , . . . , α

k
i]
T , i = 1, . . . , k.

Each time we select an index i and aim at minimizing the following sub-problem formed by
ᾱi:

min
ᾱi

k∑
m=1

1
2
A(αmi)2 +Bmα

m
i

subject to
k∑

m=1

αmi = 0,

αmi ≤ Cmyi
,m = {1, . . . , k},

where
A = xTi xi and Bm = wT

mxi + emi −Aαmi .

Since bounded variables (i.e., αmi = Cmyi
, ∀m /∈ Ui) can be shrunken during training, we

minimize with respect to a sub-vector ᾱUi
i , where Ui ⊂ {1, . . . , k} is an index set. That is,

we solve the following |Ui|-variable sub-problem while fixing other variables:

min
ᾱ

Ui
i

∑
m∈Ui

1
2
A(αmi)2 +Bmα

m
i

subject to
∑
m∈Ui

αmi = −
∑
m/∈Ui

αmi , (13)

αmi ≤ Cmyi
,m ∈ Ui.

Notice that there are two situations that we do not solve the sub-problem of index i. First,
if |Ui| < 2, then the whole ᾱi is fixed by the equality constraint in (13). So we can shrink
the whole vector ᾱi while training. Second, if A = 0, then xi = 0 and (11) shows that
the value of αmi does not affect wm for all m. So the value of ᾱi is independent of other
variables and does not affect the final model. Thus we do not need to solve ᾱi for those
xi = 0.

Similar to Hsieh et al. (2008), we consider a random permutation heuristic. That
is, instead of solving sub-problems in the order of ᾱ1, . . . ᾱl, we permute {1, . . . l} to
{π(1), . . . π(l)}, and solve sub-problems in the order of ᾱπ(1), . . . , ᾱπ(l). Past results show
that such a heuristic gives faster convergence.

We discuss our sub-problem solver in Appendix E.3. After solving the sub-problem, if
α̂mi is the old value and αmi is the value after updating, we maintain wm, defined in (11),
by

wm ← wm + (αmi − α̂mi)yixi. (14)

To save the computational time, we collect elements satisfying αmi 6= α̂mi before doing (14).
The procedure is described in Algorithm 1.

Algorithm 1 The coordinate descent method for (10)

• Given α and the corresponding wm

• While α is not optimal, (outer iteration)

1. Randomly permute {1, . . . , l} to {π(1), . . . , π(l)}
2. For i = π(1), . . . , π(l), (inner iteration)

If ᾱi is active and xTi xi 6= 0 (i.e., A 6= 0)
– Solve a |Ui|-variable sub-problem (13)
– Maintain wm for all m by (14)

E.3 Solving the sub-problem (13)

We follow the approach in Crammer and Singer (2000). Let ν = AᾱUi
i +B. Solving (13)

is equivalent to solving

min
ν

1
2
‖ν‖2

subject to νm ≤ ACmyi
+Bm,∀m ∈ Ui, (15)∑

m∈Ui

νm =
∑
m∈Ui

Bm −A
∑
m/∈Ui

Cmyi
.

By defining D as

Dm =

{
Bm +ACmyi

if m = yi,

Bm if m 6= yi,
(16)

Eq. (15) becomes

min
ν

1
2
‖ν‖2

subject to νm ≤ Dm, ∀m ∈ Ui, (17)∑
m∈Ui

νm =
∑
m∈Ui

Dm −
∑
m∈Ui

ACmyi
−A

∑
m/∈Ui

Cmyi
=
∑
m∈Ui

Dm −AC.

Note that the last equality is from (12). The KKT optimality conditions of (17) are

νm = β − ρm,
ρm(Dm − νm) = 0, ρm ≥ 0,∀m ∈ Ui,∑

m∈Ui

νm = (
∑
m∈Ui

Dm)−AC,
(18)

where β and ρm are Lagrange multipliers. Eq. (18) implies∑
ρm=0

β +
∑
ρm 6=0

Dm = (
∑
m∈Ui

Dm)−AC, and β ≥ Dm,∀ρm 6= 0.

Algorithm 2 Solving the sub-problem

• Given A, B

• Compute D by (16)

• Sort D in decreasing order; assume D has elements D0, D1, . . . , D|Ui|−1

• r ← 1, β ← D0 −AC

• While r < |Ui| and β/r < Dr

1. β ← β +Dr

2. r ← r + 1

• αmi ← min(Cmyi
, (β −Bm)/A), ∀m

Thus we intend to find a β, where

β =
(
∑

ρm=0Dm)−AC
|{m | ρm = 0}|

, and β ≥ max
ρm 6=0

Dm. (19)

To solve (19), we need to verify the set {m | ρm = 0}, and from (18) and (17), we have:

β > Dm if ρm > 0,
β ≤ Dm if ρm = 0.

We begin with a set Φ = φ, and then sequentially add an index m to Φ by the decreasing
order of Dm until

(
∑

m∈ΦDm)−AC
|Φ|

≥ max
m/∈Φ

Dm.

Having the set Φ = {m | ρm = 0} and β =
P

m∈ΦDm−AC
|Φ| , the optimal solution can be

computed by the following equation:

αmi = min(Cmyi
, (β −Bm)/A).

Algorithm 2 lists the details for solving the sub-problem (13).

E.4 Stopping Condition

The KKT optimality conditions of (10) imply that there are b1, . . . , bl ∈ R such that for all
i = 1, . . . , l, m = 1, . . . , k,

wT
mxi + emi − bi = 0 if αmi < Cmi ,

wT
mxi + emi − bi ≤ 0 if αmi = Cmi .

Let
Gmi =

∂f(α)
∂αmi

= wT
mxi + emi , ∀i,m,

the optimality of α holds if and only if

max
m

Gmi − min
m:αm

i <C
m
i

Gmi = 0,∀i. (20)

At each inner iteration, we first compute Gmi and define:

minG ≡ min
m:αm

i <C
m
i

Gmi ,maxG ≡ max
m

Gmi , Si = maxG−minG.

Then the stopping condition for a tolerance ε > 0 can be checked by

max
i
Si < ε. (21)

Note that maxG and minG are calculated based on the latest α (i.e., α after each inner
iteration).

E.5 Shrinking Strategy

The shrinking technique reduces the size of the problem without considering some bounded
variables. Eq. (20) suggests that we can shrink αmi out if αmi satisfies the following condition:

αmi = Cmyi
and Gmi < minG. (22)

Then we solve a |Ui|-variable sub-problem (13). To implement this strategy, we maintain an
l× k index array alpha index and an l array activesize i, such that activesize i[i] =
|Ui|. We let the first activesize i[i] elements in alpha index[i] are active indices, and
others are shrunken indices. Moreover, we need to maintain an l-variable array y index,
such that

alphaindex[i][y index[i]] = yi. (23)

When we shrink a index alpha index[i][m] out, we first find the largest m̄ such that m̄ <
activesize i[i] and alpha index[i][m̄] does not satisfy the shrinking condition (22), then
swap the two elements and decrease activesize i[i] by 1. Note that if we swap index yi, we
need to maintain y index[i] to ensure (23). For the instance level shrinking and random
permutation, we also maintain a index array index and a variable activesize similar to
alpha index and activesize i, respectively. We let the first activesize elements of
index be active indices, while others be shrunken indices. When |Ui|, the active size of ᾱi,
is less than 2 (activesize i[i] < 2), we swap this index with the last active element in
index, and decrease activesize by 1.

However, experiments show that (22) is too aggressive. There are too many wrongly
shrunken variables. To deal with this problem, we use an ε-cooling strategy. Given a
pre-specified stopping tolerance ε, we begin with

εshrink = max(1, 10ε)

and decrease it by a factor of 2 in each graded step until εshrink ≤ ε.
The program ends if the stopping condition (21) is satisfied. But we can exactly compute

(21) only when there are no shrunken variables. Thus the process stops under the following
two conditions:

Algorithm 3 Shrinking strategy

• Given ε

• Begin with εshrink ← max(1, 10ε), start from all← True

• While

1. For all active ᾱi
(a) Do shrinking and calculate Si
(b) stopping← max(stopping, Si)
(c) Optimize over active variables in ᾱi

2. If stopping < εshrink

(a) If stopping < ε and start from all is True, BREAK
(b) Take all shrunken variables back
(c) start from all← True

(d) εshrink ← max(ε, εshrink/2)

Else

(a) start from all← False

1. None of the instances is shrunken in the beginning of the loop.

2. (21) is satisfied.

Our shrinking strategy is in Algorithm 3.

Regarding the random permutation, we permute the first activesize elements of index
at each outer iteration, and then sequentially solve the sub-problems.

Appendix F. L1-regularized L2-loss Support Vector Machines

In this section, we describe details of a coordinate descent method for L1-regularized L2-loss
support vector machines. The problem formulation is in (4). Our procedure is similar to
Chang et al. (2008) for L2-regularized L2-loss SVM, but we make certain modifications to
handle the non-differentiability due to the L1 regularization. It is also related to Tseng and
Yun (2007). See detailed discussions of theoretical properties in Yuan et al. (2009).

Define

bi(w) ≡ 1− yiwTxi and I(w) ≡ {i | bi(w) > 0}.

The one-variable sub-problem for the jth variable is a function of z:

f(w + zej)− f(w)

=|wj + z| − |wj |+ C
∑

i∈I(w+zej)

bi(w + zej)2 − C
∑
i∈I(w)

bi(w)2

=|wj + z|+ Lj(z;w) + constant

≈|wj + z|+ L′j(0;w)z +
1
2
L′′j (0;w)z2 + constant, (24)

where

ej = [0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0]T ∈ Rn, (25)

Lj(z;w) ≡ C
∑

i∈I(w+zej)

bi(w + zej)2,

L′j(0;w) = −2C
∑
i∈I(w)

yixijbi(w),

and

L′′j (0;w) = max(2C
∑
i∈I(w)

x2
ij , 10−12). (26)

Note that Lj(z;w) is differentiable but not twice differentiable, so 2C
∑

i∈I(w) x
2
ij in (26)

is a generalized second derivative (Chang et al., 2008) at z = 0. This value may be zero
if xij = 0, ∀i ∈ I(w), so we further make it strictly positive. The Newton direction from
minimizing (24) is

d =

−L′j(0;w)+1

L′′j (0;w)
if L′j(0;w) + 1 ≤ L′′j (0;w)wj ,

−L′j(0;w)−1

L′′j (0;w)
if L′j(0;w)− 1 ≥ L′′j (0;w)wj ,

−wj otherwise.

See the derivation in (Yuan et al., 2009, Appendix B). We then conduct a line search
procedure to check if d, βd, β2d, . . . , satisfy the following sufficient decrease condition:

|wj + βtd| − |wj |+ C
∑

i∈I(w+βtdej)

bi(w + βtdej)2 − C
∑
i∈I(w)

bi(w)2

≤σβt
(
L′j(0;w)d+ |wj + d| − |wj |

)
,

(27)

where t = 0, 1, 2, . . . , β ∈ (0, 1), and σ ∈ (0, 1). From Chang et al. (2008, Lemma 5),

C
∑

i∈I(w+dej)

bi(w + dej)2 − C
∑
i∈I(w)

bi(w)2 ≤ C(
l∑

i=1

x2
ij)d

2 + L′j(0;w)d.

We can precompute
∑l

i=1 x
2
ij and check

|wj + βtd| − |wj |+ C(
l∑

i=1

x2
ij)(β

td)2 + L′j(0;w)βtd

≤σβt
(
L′j(0;w)d+ |wj + d| − |wj |

)
,

(28)

before (27). Note that checking (28) is very cheap. The main cost in checking (27) is on
calculating bi(w + βtdej), ∀i. To save the number of operations, if bi(w) is available, one
can use

bi(w + βtdej) = bi(w)− (βtd)yixij . (29)

Therefore, we store and maintain bi(w) in an array. Since bi(w) is used in every line
search step, we cannot override its contents. After the line search procedure, we must
run (29) again to update bi(w). That is, the same operation (29) is run twice, where the
first is for checking the sufficient decrease condition and the second is for updating bi(w).
Alternatively, one can use another array to store bi(w+βtdej) and copy its contents to the
array for bi(w) in the end of the line search procedure. We propose the following trick to
use only one array and avoid the duplicated computation of (29). From

bi(w + dej) = bi(w)− dyixij ,
bi(w + βdej) = bi(w + dej) + (d− βd)yixij ,

bi(w + β2dej) = bi(w + βdej) + (βd− β2d)yixij ,
...

(30)

at each line search step, we obtain bi(w+βtdej) from bi(w+βt−1dej) in order to check the
sufficient decrease condition (27). If the condition is satisfied, then the bi array already has
values needed for the next sub-problem. If the condition is not satisfied, using bi(w+βtdej)
on the right-hand side of the equality (30), we can obtain bi(w+ βt+1dej) for the next line
search step. Therefore, we can simultaneously check the sufficient decrease condition and
update the bi array. A summary of the procedure is in Algorithm 4.

The stopping condition is by checking the optimality condition. An optimal wj satisfies
L′j(0;w) + 1 = 0 if wj > 0,
L′j(0;w)− 1 = 0 if wj < 0,
−1 ≤ L′j(0;w) ≤ 1 if wj = 0.

(31)

We calculate

vj ≡

|L′j(0;w) + 1| if wj > 0,
|L′j(0;w)− 1| if wj < 0,

max
(
L′j(0;w)− 1, −1− L′j(0;w), 0

)
if wj = 0,

to measure how the optimality condition is violated. The procedure stops if

max
j

(vj at the current iteration)

≤0.01×max
j

(vj at the 1st iteration) .

Due to the sparsity of the optimal solution, some wj become zeros in the middle of
the optimization procedure and are not changed subsequently. We can shrink these wj
components to reduce the number of variables. From (31), an optimal wj satisfies that

−1 < L′j(0;w) < 1 implies wj = 0.

If at one iteration, wj = 0 and

−1 +M ≤ L′j(0;w) ≤ 1−M,

where

M ≡ maxj (vj at the previous iteration)
l

,

we conjecture that wj will not be changed in subsequent iterations. We then remove this
wj from the optimization problem.

Appendix G. L1-regularized Logistic Regression

In this section, we describe a coordinate descent method for L1-regularized logistic regres-
sion. The method is similar to that in Appendix F for L1-regularized L2-loss support vector
machines.

The problem formulation is in (5). To avoid handling yi in e−yiw
Txi , we reformulate

f(w) as

f(w) = ‖w‖1 + C

 l∑
i=1

log(1 + e−w
Txi) +

∑
i:yi=−1

wTxi

 .

At each iteration, we select an index j and minimize the following one-variable function of
z:

f(w + zej)− f(w)

=|wj + z| − |wj |+ C

 l∑
i=1

log(1 + e−(w+zej)Txi) +
∑

i:yi=−1

(w + zej)Txi

− C

 l∑
i=1

log(1 + e−w
Txi) +

∑
i:yi=−1

wTxi

=|wj + z|+ Lj(z;w) + constant

≈|wj + z|+ L′j(0;w)z +
1
2
L′′j (0;w)z2 + constant, (32)

where ej is defined in (25),

Lj(z;w) ≡C

 l∑
i=1

log(1 + e−(w+zej)Txi) +
∑

i:yi=−1

(w + zej)Txi

 ,

L′j(0;w) =C

 l∑
i=1

−xij
ewTxi + 1

+
∑

i:yi=−1

xij

 , and

L′′j (0;w) =C

(
l∑

i=1

(
xij

ewTxi + 1

)2

ew
Txi

)
.

The optimal solution d of minimizing (32) is:

d =

−L′j(0;w)+1

L′′j (0;w)
if L′j(0;w) + 1 ≤ L′′j (0;w)wj ,

−L′j(0;w)−1

L′′j (0;w)
if L′j(0;w)− 1 ≥ L′′j (0;w)wj ,

−wj otherwise.

We then conduct a line search procedure to check if d, βd, β2d, . . . , satisfy the following
sufficient decrease condition:

f(w + βtdej)− f(w)

=C

 ∑
i:xij 6=0

log

(
1 + e−(w+βtdej)Txi

1 + e−wTxi

)
+ βtd

∑
i:yi=−1

xij

+ |wj + βtd| − |wj |

=
l∑

i:xij 6=0

C log

(
e(w+βtdej)Txi + 1

e(w+βtdej)Txi + eβ
tdxij

)
+ βtd

∑
i:yi=−1

Cxij + |wj + βtd| − |wj | (33)

≤σβt
(
L′j(0;w)d+ |wj + d| − |wj |

)
, (34)

where t = 0, 1, 2, . . . , β ∈ (0, 1), and σ ∈ (0, 1).

As the computation of (33) is expensive, similar to (28) for L2-loss SVM, we derive an
upper bound for (33). If

x∗j ≡ max
i
xij ≥ 0,

then

∑
i:xij 6=0

C log

(
e(w+dej)Txi + 1

e(w+dej)Txi + edxij

)
=

∑
i:xij 6=0

C log

(
ew

Txi + e−dxij

ewTxi + 1

)

≤(
∑

i:xij 6=0

C) log

∑

i:xij 6=0C
ewT xi+e−dxij

ewT xi+1∑
i:xij 6=0C

 (35)

=(
∑

i:xij 6=0

C) log

1 +

∑
i:xij 6=0C

(
1

ewT xi+1
(e−dxij − 1)

)
∑

i:xij 6=0C

≤(
∑

i:xij 6=0

C) log

1 +

∑
i:xij 6=0C

(
1

ewT xi+1
(xije

−dx∗j

x∗j
+

x∗j−xij

x∗j
− 1)

)
∑

i:xij 6=0C

 (36)

=(
∑

i:xij 6=0

C) log

1 +
(e−dx

∗
j − 1)

∑
i:xij 6=0

Cxij

ewT xi+1

x∗j
∑

i:xij 6=0C

 , (37)

where (35) is from Jensen’s inequality and (36) is from the convexity of the exponential
function:

e−dxij ≤ xij
x∗j
e−dx

∗
j +

x∗j − xij
x∗j

e0 if xij ≥ 0. (38)

As f(w) can also be represented as

f(w) = ‖w‖1 + C

 l∑
i=1

log(1 + ew
Txi)−

∑
i:yi=1

wTxi

 ,

we can derive another similar bound

∑
i:xij 6=0

C log

(
1 + e(w+dej)Txi

1 + ewTxi

)

≤(
∑

i:xij 6=0

C) log

1 +
(edx

∗
j − 1)

∑
i:xij 6=0

Cxije
wT xi

ewT xi+1

x∗j
∑

i:xij 6=0C

 . (39)

Therefore, before checking the sufficient decrease condition (34), we check if

min
(
(39)− βtd

∑
i:yi=1

Cxij + |wj + βtd| − |wj |,

(37) + βtd
∑

i:yi=−1

Cxij + |wj + βtd| − |wj |
)

≤σβt
(
L′j(0;w)d+ |wj + d| − |wj |

)
.

(40)

Note that checking (40) is very cheap since we already have

∑
i:xij 6=0

Cxij

ewTxi + 1
and

∑
i:xij 6=0

Cxije
wTxi

ewTxi + 1

in calculating L′j(0;w) and L′′j (0;w). However, to apply (40) we need that the data set
satisfies xij ≥ 0, ∀i,∀j. This condition is used in (38).

The main cost in checking (33) is on calculating e(w+βtdej)Txi , ∀i. To save the number
of operations, if ew

Txi is available, one can use

e(w+βtdej)Txi = ew
Txie(βtd)xij .

Therefore, we store and maintain ew
Txi in an array. The setting is similar to the array

1 − yiwTxi for L2-loss SVM in Appendix F, so one faces the same problem of not being
able to check the sufficient decrease condition (34) and update the ew

Txi array together. We
can apply the same trick in Appendix F, but the implementation is more complicated. In
our implementation, we allocate another array to store e(w+βtdej)Txi and copy its contents
for updating the ew

Txi array in the end of the line search procedure. A summary of the
procedure is in Algorithm 5.

The stopping condition and the shrinking implementation to remove some wj compo-
nents are similar to those for L2-loss support vector machines (see Appendix F).

References

Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. Coordinate descent method for large-
scale L2-loss linear SVM. Journal of Machine Learning Research, 9:1369–1398, 2008.
URL http://www.csie.ntu.edu.tw/~cjlin/papers/cdl2.pdf.

Koby Crammer and Yoram Singer. On the learnability and design of output codes for
multiclass problems. In Computational Learing Theory, pages 35–46, 2000.

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and Sellamanickam Sun-
dararajan. A dual coordinate descent method for large-scale linear SVM. In Proceedings
of the Twenty Fifth International Conference on Machine Learning (ICML), 2008. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf.

S. Sathiya Keerthi, Sellamanickam Sundararajan, Kai-Wei Chang, Cho-Jui Hsieh, and Chih-
Jen Lin. A sequential dual method for large scale multi-class linear SVMs. In Proceedings
of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2008. URL http://www.csie.ntu.edu.tw/~cjlin/papers/sdm_kdd.pdf.

Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Trust region Newton method for
large-scale logistic regression. Journal of Machine Learning Research, 9:627–650, 2008.
URL http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf.

Paul Tseng and Sangwoon Yun. A coordinate gradient descent method for nonsmooth
separable minimization. Mathematical Programming, 117:387–423, 2007.

http://www.csie.ntu.edu.tw/~cjlin/papers/cdl2.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/sdm_kdd.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf

Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. A comparison of
optimization methods for large-scale l1-regularized linear classification. Technical re-
port, Department of Computer Science, National Taiwan University, 2009. URL http:
//www.csie.ntu.edu.tw/~cjlin/papers/l1.pdf.

http://www.csie.ntu.edu.tw/~cjlin/papers/l1.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/l1.pdf

Algorithm 4 A coordinate descent algorithm for L1-regularized L2-loss SVC

• Choose β = 0.5 and σ = 0.01. Given initial w ∈ Rn.

• Calculate
bi ← 1− yiwTxi, i = 1, . . . , l.

• While w is not optimal

For j = 1, 2, . . . , n

1. Find the Newton direction by solving

min
z

|wj + z|+ L′j(0;w)z +
1
2
L′′j (0;w)z2.

The solution is

d =

−L′j(0;w)+1

L′′j (0;w)
if L′j(0;w) + 1 ≤ L′′j (0;w)wj ,

−L′j(0;w)−1

L′′j (0;w)
if L′j(0;w)− 1 ≥ L′′j (0;w)wj ,

−wj otherwise.

2. d̄← 0; ∆← L′j(0;w)d+ |wj + d| − |wj |.
3. While t = 0, 1, 2, . . .

(a) If

|wj + d| − |wj |+ C(
l∑

i=1

x2
ij)d

2 + L′j(0;w)d ≤ σ∆,

then
bi ← bi + (d̄− d)yixij , ∀i and BREAK.

(b) If t = 0, calculate
Lj,0 ← C

∑
i∈I(w)

b2i .

(c) bi ← bi + (d̄− d)yixij , ∀i.
(d) If

|wj + d| − |wj |+ C
∑

i∈I(w+dej)

b2i − Lj,0 ≤ σ∆,

then
BREAK.

Else
d̄← d; d← βd; ∆← β∆.

4. Update wj ← wj + d.

Algorithm 5 A coordinate descent algorithm for L1-regularized logistic regression

• Choose β = 0.5 and σ = 0.01. Given initial w ∈ Rn.

• Calculate
bi ← ew

Txi , i = 1, . . . , l.

• While w is not optimal

For j = 1, 2, . . . , n

1. Find the Newton direction by solving

min
z

|wj + z|+ L′j(0;w)z +
1
2
L′′j (0;w)z2.

The solution is

d =

−L′j(0;w)+1

L′′j (0;w)
if L′j(0;w) + 1 ≤ L′′j (0;w)wj ,

−L′j(0;w)−1

L′′j (0;w)
if L′j(0;w)− 1 ≥ L′′j (0;w)wj ,

−wj otherwise.

2. ∆← L′j(0;w)d+ |wj + d| − |wj |.
3. While

(a) If mini,j xij ≥ 0 and

min
(
(39)− d

∑
i:yi=1

Cxij + |wj + d| − |wj |,

(37) + d
∑

i:yi=−1

Cxij + |wj + d| − |wj |
)

≤σ∆,

then
bi ← bi × edxij , ∀i and BREAK.

(b) b̄i ← bi × edxij , ∀i.
(c) If

∑
i:xij 6=0

C log
(

b̄i + 1
b̄i + edxij

)
+ d

∑
i:yi=−1

Cxij + |wj + d| − |wj | ≤ σ∆,

then
bi ← b̄i, ∀i and BREAK.

Else
d← βd; ∆← β∆.

4. Update wj ← wj + d.

	Introduction
	Large Linear Classification (Binary and Multi-class)
	The Software Package
	Practical Usage
	Documentation
	Design

	Comparison
	Conclusions
	Formulations
	L2-regularized L1- and L2-loss Support Vector Classification
	L2-regularized Logistic Regression
	L1-regularized L2-loss Support Vector Classification
	L1-regularized Logistic Regression

	L2-regularized L1- and L2-loss SVM (Solving Dual)
	L2-regularized Logistic Regression (Solving Primal)
	L2-regularized L2-loss SVM (Solving Primal)
	Multi-class SVM by Crammer and Singer
	Formulations
	The Sequential Dual Method for (10)
	Solving the sub-problem (13)
	Stopping Condition
	Shrinking Strategy

	L1-regularized L2-loss Support Vector Machines
	L1-regularized Logistic Regression

