A Short Introduction to ENTOOL

C. Merkwirth, J. Wichard
January 14, 2003

Contents
1 Introduction

2 Ensemble Models
2.1 Biasand Variance
2.2 Ensembles
2.3 Cross Validation
24 Diversity of Models

3 Implementation and design principles
3.1 Models and model classes
3.2 Theensembleclass
3.3 Example
3.4 Directory and file overviewo

4 Contributions from other toolboxes
4.1 Neural Network Based System Identification TOOLBOX

Uk = NN

NelNocREN I pi]

©

1 Introduction

ENTOOL is a Matlab-toolbox for regression modeling. Aim of this toolbox is to
generate and train regression models on data sets consisting of pre-image/image
pairs (observations).

This documentation shows the user the usage of the toolbox and gives a guide-
line, how to add own model classes in the ENTOOL environment. It also gives
a more than short introduction to the principles of ensemble learning and ref-
erences to the literature.

Since regression is a field of statistics going back at least to Gauss, it is not
possible to carefully implement any regression technique that has been invented
so far, and even less possible to write an in-depth documentation for the used
models. To get an overview over the field of machine learning, the reader should
have a look into:

Hastie, Tibshirani, Friedman - The Elements of Statistical Learning, Springer
2001.

ENTOOL combines several well know model-classes to build ensembles, that
perform much better than the well-trained single models would do by there
own.

The implementation of this toolbox is based on the following principles:

e The user should be able to use the toolbox ’out-of-the-box’, i.e. with a set
of default-parameters to initialize the models and some demos, that show
the general usage.

e The user should have direct access to the model-parameters and the initial
pool of model-classes that are used for ensembling

e The user should be able to add his own model-classes to the toolbox
without any problems

We choose an object oriented design to realize this aims. Every model-type is
implemented as a separate class with a clearly defined data interface. A detailed
description is given below.

2 Ensemble Models

2.1 Bias and Variance

First of all we have to point out why an ensembles of models performs better
than a single model would do. Consider a dataset D with pairs of input-output-
data (Z,,yu),u = 1,..., N, where 7, € R? and the y,, are scalar values. We
suppose an underlying functional relationship of the form

y= f(f)real + €,

where the additional error has zero mean and does not depend on . The goal
of regression is to find a close approximation f(Z) of the assumed deterministic
function f(&);eq with additional constrains:

e The modeling error (training error) E = ij:l(yu — f(#,))? should be as
small as possible

e The generalization ability of the model f(Z) should be as high as pos-
sible,i.e. the error on unseen data sets, that were not used for model-
training, should also be small

These two constrains mark a crucial problem in regression estimation, know as
the bias-variance dilemma (for a detailed description of that problem see for
example [3]).

If we want to reduce the training error, we can increase the complexity of the
model, in general the number off free model parameters. This can be done,
until the training error is zero, but than we expect a high out-of-sample error,
because we lost generalization. Figure 2.1 gives an idea of that bias-variance
dilemma.

Test Sample

Prediction Error

/

Training Sample

-

Low Model Complexity High

Figure 1: The bias-variance-tradeoff in regression. The training error can be
reduced by increasing the complexity of the model. The out-of-sample error
is calculated on a test data set that is not used during the training. The test
error could be seen as an estimation of the generalization ability of the trained
model. It increases at a certain level of complexity, that means the model fits
the peculiarities of the training data (i.g. the noise), when the complexity is
increased further.

2.2 Ensembles

If we average the output of several different models, we call it an ensemble of
models, or simply an ensemble. The idea of averaging different models was
developed in the neural network community in the beginning of the 90’s [2, 9].
It was pointed out by Krogh et al. [4], that the generalization error of the
ensemble is lower than the mean of the generalization error of the single ensemble
members.

To see this, we define the weighted ensemble average as

K
Fx) = wifr(x), (1)
k=1

where fi(x) denotes the k-individual model and the weights), w; = 1 sum to
one.

The generalization error of the ensemble

e(x) = &x)—alx), (2)

with the two quantities

K

éx) = Z wi(y(x) — fr(x))? Average error of the individual models
k=1
K —

a(x) = Z wi(fe(x) — f(x))?> Average ambiguity of the ensemble
k=1

If we look at this error decomposition, we can conclude:

e The ensemble generalization error e(x) is always smaller than the expected
error of the individual models &(x)

e An ensemble should consist of well trained but diverse models in order to
increase the ensemble ambiguity

Note, that up to this point, no assumptions about the used models were made.

2.3 Cross Validation

In order to estimate the generalization error and to select models for the final
ensemble we use a cross-validation scheme for model training ([3]).
The cross-validation is done in several training rounds on different training sets,

because this increases the ambiguity of the ensemble and leads to better gen-
eralization [4]. Another advantage of this method is, that we get an unbiased
estimator of the ensemble generalization error and at the same time training
the ensemble on the whole data set. This is useful in situations, where only a
few data points are available.

The whole procedure consists of the following steps:
e The data is divided in two sets
e Several models are trained on the first set

e The models are compared by evaluating the prediction errors on the unseen
data of the test set

e The best performers are taken out and become ensemble members

e The data is divided again in a way that the new test set has minimal
overlap with the former ones

e The procedure stops if the ensemble has the desired size

| Test set | Training set |

_ Training
| | Testset | Training set | Rounds

-
L]
-

| Training set

-
-
-

Test set |

Figure 2: Cross training Scheme

Figure 2.3 illustrates the data partition during the training of the cross-validation
ensemble.

2.4 Diversity of Models

The cross-validation mentioned above is one way of introducing model-diversity,
because the training on slightly different data sets leads to different models.
Krogh et al. have pointed out in their work [5] that the benefit of ensemble
learning is high if the ensemble members disagree, which leads to a larger am-
biguity term in the error decomposition in equation 2.

In the ENTOOL, we obtain a high ensemble-ambiguity by using different mod-
eling approaches. It seems to be clear, that a (Multi-Layer-Perceptron) MLP
has other features than a k-nearest-neighbor model oder than a simple linear
regression model.

The current implementation of the ENTOOL has the following model types as
Matlab classes:

Multivariate adaptive regression splines

Radial basis functions Networks (RBF)

Linear regression

Polynomial regression

K-nearest-neighbor models with adaptive metric

Multilayer perceptron (MLP) trained with first order gradient decent

Perceptron trained with a second order gradient decent

3 Implementation and design principles

3.1

Models and model classes

Every model is an object of some class. The constructor is used to create
an empty model of the specified topology (if there’s any), and the training
methods takes these model and trains it on the given training observations.
After that, the model can be used to predict the output of prior unseen
training data.

Every model class is implemented as separate Matlab class, e.g. the
nearest-neighbor based regressor can be found as class vicinal, polyno-
mial models as class polynomial etc.

The command interface to all these classes is basically the same, so it’s
quite easy to change the type of model used just be changing the line that
contains the constructor of that model.

Example:

model = vicinal(12);
model = train(model, X, Y, sampleclass, ...);

can be changed to:

model = polynomial(3,4);
model = train(model, X, Y, sampleclass, ...);

The matrices X and Y are constructed be rearranging the input-output-data
(Zy,yu),p=1,...,N from equation 2.1. The lines of the (/N x d)-matrix X are
the input-vectors &, and the (N x 1)-matrix Y consists of the scalar outputs y,

T 1
X = : Y =

N YN

The vector ’sampleclass’ has the same size as Y and consists of zeros and ones.
The entries describe whether a sample belongs to the trailings set or not.

1 (Z1,y1) belongs to the training set
(Z2,y2) belongs to the test set
sampleclass = . that means .
1 (Zn,yn) belongs to the training set

All classes offer at least the following methods:

e get
— [value] = get(model, param)
— get the properties 'param’ from the ensemble object 'model’
e set
— [model | = set(model, param, value)
— set the model properties 'param’ to the given ’value’
e train
— [model, trainerr | = train(model, X, Y, sampleclass, trainparams,
eps, varargin)
— train the ensemble object 'model’ with the parameters given in ’train-
params’ and the epsilon insensitive error loss ‘eps
e calc
— [xout | = calc(model, X)
— calculate the output of the ensemble object 'model’ to the given input
data in X
e display
— display(model)

— display a detailed description of the relevant model parameters, for
example the topology and the weights of the MLP, etc.

3.2 The ensemble class

A special class is the class ensemble, which is the parent class for all ensemble
generating techniques. Since Matlab does not support real virtual classes, you
may construct instances of the ensemble class, but there’s no method to train
such an object on some data set. An ensemble is a collection of models. To
output of these models will be averaged, according to the weights (confidence)
that is assigned to each model.

Class crosstrainensemble trains several models of same or different type on vary-
ing train/test partitions of the training data, then selects an appropriate subset
of these models to increase generalization ability. By default, the models of the
ensemble are not weighted.

It possible to train an already trained crosstrainensemle again on the same data
set or a data set from the same underlying dependency, in this case it will keep
the constituting models and weights, the new models will be added to the old
ones.

Objects of child classes of the ensemble class them self are models, so it should

be possible to create ensembles of other ensembles etc.
Therefore, one could divide the models in two classes:

1. Primary models, that implement basic regression algorithms

2. Secondary models, that use other models to build ensembles.

3.3 Example
The input data is given in X and the output in Y as described in 3.

Call the constructor for the class of your choice, in this case the cross-training:
ens = crosstrainensemble;

Get the default training parameter and modify the number of training partitions
(enstrainparams.nr_cv_partitions):

enstrainparams = get(ens, ’trainparams’);
enstrainparams.nr_cv_partitions = 6;

Train the ensemble:

ens = train(ens, X, Y, [], enstrainparams, 0.05);

3.4 Directory and file overview

Ensemble Classes

@cvensemble - Class cvregensemble

@crosstrainensemble - Class crosstrainensemble

@subspaceensemble - Class subspaceensemble

@ensemble - Class ensemble (parent of the ensemble classes)

Model Classes

@ares - Class ares (Multivariate adaptive regression splines)

@baseline - Class baseline (prediction with the mean of the data)

@linear - Class linear (linear regression)

@perceptron - Class perceptron (multi-layer-perceptron, trained
with 1. order gradient decent)

@perceptron2 - Class perceptron2 (single-layer-perceptron, trained
with 2. order gradient decent)

@polynomial - Class polynomial (polynomial regression)

@Qprbin - Class prbfn (radial basis function network)

@vicinal - Class vicinal (primary model: k nearest neighbors)

Q@rbf - Class rbf (radial basis functions)

Directories

demos - Several demos for this toolbox

documentation - Documentation for this toolbox

mextools - Mextools, needed for compiling the mex-code in tools

tools - Lots of helper m-files, also contains all mex
source-code and a makefile (make.m)

Files

startup.m - Startup file, does necessary path settings for this toolbox

install.m - Installation routine for compiling the mex functions

4 Contributions from other toolboxes

4.1 Neural Network Based System Identification TOOL-
BOX

The @perceptron?2 class is simply an interface to some functions from the ” Neu-
ral Network Based System Identification TOOLBOX” [7]

by Magnus Ngrgaard

Department of Automation

Department of Mathematical Modelling

Technical Report 00-E-891, Department of Automation
Technical University of Denmark

10

Please see the technical report [7] for further description.

MATLAB is a trademark of The MathWorks, Inc. MS-Windows is a trademark
of Microsoft Coporation.

References

1]

2]

Freund: “Short introduction to boosting”, J. Japan. Soc. for Artif. Intel.
14(5), pp.771-780, (1999)

Hansen, Salamon: ”Neural network ensembles,” IEEE Trans. Pattern Anal-
ysis and Machine Intelligence, vol. 12, no. 10, pp.993 - 1001, (1990).

Hastie, Tibshirani, Friedman: “The Elements of Statistical Learning”,
Springer (2001)

Krogh, Vedelsby: “Neural Network Ensembles, Cross Validation and Active
Learning”, Advances in Neural Information Processing Systems 7, MIT
Press (1995)

Krogh, Sollich: “Statistical mechanics of ensemble learning”, Physical Re-
view E, 55(1), pp.811-825, (1997)

McNames: “Innovations in Local Modeling for Time Series Prediction”,
Ph.D. Thesis, Stanford University (1999)

Norgaard: “Neural Network Based System Identification Toolbox”, Tech.
Report. 00-E-891, Department of Automation, Technical University of Den-
mark (2000)

Orr: “Matlab Functions for Radial Basis Function Networks”, (1999)

Perrone, Cooper: “When networks disagree: Ensemble methods for neural

networks”, Neural Networks for Speech and Image Processing, Chapman
Hall (1993)

Suykens, Vandewalle: “Nonlinear Modeling - Advanced Black-Box Tech-
niques”, Kluwer Academic Publishers (1998)

