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We report on the generation of computer-based models for the prediction of the chromosome-damaging
potential of chemicals as assessed in thein Vitro chromosome aberration (CA) test. On the basis of
publicly available CA-test results of more than 650 chemical substances, half of which are drug-like
compounds, we generated two different computational models. The first model was realized using the
(Q)SAR tool MCASE. Results obtained with this model indicate a limited performance (53%) for the
assessment of a chromosome-damaging potential (sensitivity), whereas CA-test negative compounds were
correctly predicted with a specificity of 75%. The low sensitivity of this model might be explained by
the fact that the underlying 2D-structural descriptors only describe part of the molecular mechanism
leading to the induction of chromosome aberrations, that is, direct drug-DNA interactions. The second
model was constructed with a more sophisticated machine learning approach and generated a classification
model based on 14 molecular descriptors, which were obtained after feature selection. The performance
of this model was superior to the MCASE model, primarily because of an improved sensitivity, suggesting
that the more complex molecular descriptors in combination with statistical learning approaches are better
suited to model the complex nature of mechanisms leading to a positive effect in the CA-test. An analysis
of misclassified pharmaceuticals by this model showed that a large part of the false-negative predicted
compounds were uniquely positive in the CA-test but lacked a genotoxic potential in other mutagenicity
tests of the regulatory testing battery, suggesting that biologically nonsignificant mechanisms could be
responsible for the observed positive CA-test result. Since such mechanisms are not amenable to modeling
approaches it is suggested that a positive prediction made by the model reflects a biologically significant
genotoxic potential. An integration of the machine-learning model as a screening tool in early discovery
phases of drug development is proposed.

Introduction

Screening approaches for determining the genotoxic potential
of new compounds play a pivotal role during hit validation and
lead characterization phases of drug development in pharma-
ceutical companies. Traditionally, the assessment of the geno-
toxic potential of drug substances was typically performed
during early developmental stages by conducting a standard set
(battery) of genotoxicity tests that support the submission of
novel drugs to regulatory agencies. As outlined in the respective
ICH1 guidelines (1), this standard set generally consists of a
bacterial gene mutation test (Ames test), anin Vitro cytogenetic
assay in mammalian cells for the detection of chromosomal
damage (e.g., a chromosome aberration (CA-) test) and anin
ViVo cytogenetic assay in rodent hematopoietic cells.

Today, pre-regulatory genotoxicity tests are frequently per-
formed in pharmaceutical companies because of increased
compound throughput and in order to avoid late stage termina-
tion of a cost-intensive drug development due to unforeseen

genotoxicity. Such screening strategies primarily rely onin Vitro
assays, which often represent a cut down version of the re-
spective regulatory tests (e.g., Ames II) or make use of alter-
native assays (e.g., the in vitro micronucleus test for the detec-
tion of chromosomal damage). In principle, the concordance
between screening assays and regulatory tests is relatively high
(2, 3). However, in particular with respect to screening assays
for chromosomal damage, they are at best medium throughput
and as such their use in early discovery stages is restricted
because of costs and compound availability. Additionally,
genotoxicity screens might be biased by the frequent presence
of (genotoxic) impurities in early research drug batches leading
to potentially false positive results.

As an alternative, computational (in silico) structure-activity
models have gained increasing importance in the assessment
of a genotoxic potential. They have the clear advantage that no
compound is needed for testing and that they can be applied in
a true high-throughput manner. Computational programs used
for genotoxicity prediction are mainly focusing on the prediction
of the outcome of the Ames test and relatively good predictive
accuracies (>70%) can be reached for this endpoint (4). In
practice, however, it is not sufficient to solely predict bacterial
mutagenicity because results from in silico genotoxicity predic-
tions are frequently used as part of the decision process during
drug discovery. Instead, it is desirable to also be able to model
the chromosome-damaging potential of compounds in order to
fully cover the basic regulatory mutagenicity tests.
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However, in contrast to the Ames test prediction, no models
with comparable performance are currently available for the CA-
test. Several reasons might account for this situation. The good
correlation for the Ames test is based on the abundance of
(publicly) available data for this test system as well as on the
fact that most of the molecular mechanisms underlying this
genetic endpoint are fairly well understood and can be directly
related to the chemical structure (5). The situation is clearly
more complex for the CA-test. It is well-established that different
mechanisms can lead to the microscopically visible formation
of aberrant chromosomes. Structural chromosome aberrations
can be formed by direct drug-DNA interactions as a result of
incorrect DNA repair processes (6) or an interaction of drugs
with enzymes involved in DNA replication and transcription
(7). Numerical chromosome aberrations such as the gain or loss
of chromosomes are generally a result of the interaction with
cellular proteins involved in chromosome segregation (8). In
addition, it is well-known that nonphysiological stimuli during
cell culture, such as those induced by excessive cytotoxicity,
osmolarity, pH and temperature, can also lead to structural
chromosome aberrations (9).

Furthermore, the CA-test is experimentally less standardized
than the Ames test (i.e., different cells from different species
are used), and publicly available experimental data is signifi-
cantly less abundant than Ames test data and almost purely
qualitative (i.e., aberration frequencies are hardly available).
Most importantly, the quality of available CA-test data is
frequently compromised by incomplete assay data sets and
differences in the judgment of a positive effect, in particular in
the presence of cytotoxicity (10). High-qualitative CA-test data
might, in principle, be derived from publicly available data on
pharmaceuticals because they are likely to be conducted using
ICH and GLP-compliant methods. However, such public data
are relatively scarce, and in particular, the number of positive
results is limited.

Consequently, only few publications are available in which
the performance of computational models for the prediction of
CA-test data has been assessed. Using the MULTICASE
(MCASE, Beachwood, USA) methodology for constructing
experimental databases that can be used to predict the bioactivity
of compounds, Rosenkranz et al. (11) reported the construction
of a CA-test prediction model based on 233 compounds. These,
mostly organic compounds, were assessed in a CA-test as part
of the National Toxicology Program (NTP), with approximately
40% of the compounds being tested positive. Using an internal
validation strategy, the observed sensitivity and specificity (i.e.,
the correct prediction of positives and negatives, respectively)
of the model were 53% and 71%, respectively (12).

More recently, Serra et al. (13) reported on the generation of
an automated machine-learning approach to generate classifica-
tion models for the prediction of CA-test data. Support vector
machines (SVM) and k-nearest neighbor (knn) models were
developed on a set of molecular descriptors calculated for 346
mostly organic compounds (29% positives). Using a prediction
set of 37 compounds that were not included in model formation,
sensitivity and specificity values of 73% and 92%, respectively,
were obtained for knn classification models. Similar values were
obtained for SVM models.

Despite the respectable performance characteristic, of the
latter model in particular, their value for a routine in silico CA-
test screening during early drug development seems to be
questionable. First, the number of CA-test positive compounds
used for model building and evaluation in the Serra model (13)
appears to be critically low. Less than one-third of the

compounds tested positive in the CA-test, and thus, it seems
questionable as to whether similar performance characteristics
and conclusions had been obtained using a more balanced data
set containing equal numbers of active and inactive compounds.
Second, the structural diversity (chemical space) of compounds
represented in the MCASE and machine learning model (12,
13) is clearly limited to mainly organic compounds, such as
agrochemicals, known carcinogens, and industrial chemicals.
It was already noticed during the course of Ames-test modeling
that computational models, which were predominantly con-
structed using industrial and environmental compounds, per-
formed in a clearly poorer manner when applied to pharma-
ceutical compounds (14-16). This is an important implication
if a computational prediction model for the CA-test has to be
developed as a screening tool during early drug discovery.

In the present study, we therefore aimed to construct and eval-
uate two different computational models based on a heteroge-
neous data set including a significant number of pharmaceutical
compounds to be used in genotoxicity screening approaches in
a pharmaceutical environment. The recent publication of two
data collections (10, 16) containing qualitative CA-test informa-
tion on more than 650 compounds, including a significant
number of pharmaceuticals and drug-like compounds, allowed
us to readdress the issue of modeling a chromosome-damaging
potential on the basis of the largest high-quality data collection
currently publicly available.

Materials and Methods

CA-Test Data Information. The CA-test data used in this study
were obtained from two recently published data collections (10,
16). Further details on the original data source can be obtained
from the references of both data compilations.

The genotoxicity data collection from Snyder et al. (16) contains
in Vitro cytogenetics data for 248 marketed pharmaceuticals, with
positive (i.e., chromosome-damaging) results being reported for
48/248 compounds (19%). Structural information could be retrieved
for 229 of the 248 compounds. Altogether, 189 negative and 40
positive data records from this data source could be used for model-
building purposes. As outlined in the article (16) and described in
more detail in a previous collection effort (17), the in Vitro
cytogenetic data represents CA-test results obtained with diverse
cell types (Chinese hamster ovary cells, Chinese hamster lung cells,
V79 cells, MCL-5 human lymphoblastoid cells, and human blood
peripheral lymphocytes). Despite this obvious methodological
diversity, the overall quality of the data set and the reliability of
the test result are judged to be high because the data has been
generated according to standardized ICH- and GLP-compliant
methods.

The CGX database collected by Kirkland et al. (10) contains
CA-test data for 488 structurally diverse compounds, consisting of
industrial, environmental, and pharmaceutical compounds. Out of
a total number of 488 chemicals, 292 (60%) were considered
positive, and 28 were judged to be equivocal. The latter were
excluded from our model building. Structural information was
retrieved for 450 out of the 460 remaining compounds. Altogether,
168 negative and 282 positive data records from this data source
could be used for model-building purposes. Similar to the Snyder
CA-test collection, results obtained with all cell types are included
in this compilation. With respect to data quality, considerable effort
was undertaken to review collected test results (10) suggesting an
overall consistent evaluation of test data. In order to estimate the
number of drug-like compounds contained in this dataset, we
analyzed all 450 compounds for drug-likeness using a proprietary
in-house software based on the model proposed by Sadowski and
Kubinyi (18). Less than one-third of the compounds taken from
Kirkland et al. (10) were considered as drug-like (data not shown),
thus confirming that both data sources can roughly be separated
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into drug-like (16) and less drug-like (Kirkland et al., 2005)
compounds.

As summarized in Table 1, 679 compounds were used in total
for model generation, of which 322 tested positive (47%) and 357
tested negative (53%) in the CA-test.

Collection of Structures.CAS numbers of identified substances
were collected from the respective data collections (10, 16) and
queried in the MDL Toxicity database (MDL Information Systems
Inc., San Leandro, CA). The retrieved chemical structures were
stored as an sd file (MDL ISIS sdf file). For MCASE prediction
model construction, SMILES notations of all compounds were
generated by running the sd files through an existing prediction
module in MCASE (Muticase Inc, Beachwood, OH), which
generated a text file containing the respective SMILES code of the
queried compounds.

Model Construction and Validation in MCASE. A hallmark
of the MCASE software is its capability to automatically generate
prediction modules on the basis of structural information and
associated bioactivity (19). Details on model generation and
software algorithms are published elsewhere (20). In essence, the
program identifies structural fragments, ranging from 2 to 10 atoms
length, in combination with2D distances between atoms, which are
statistically correlated with activity (biophores) and inactivity
(biophobes), respectively. In addition, the program detects fragments
that act as modulators of activity and takes into account basic
physicochemical descriptors for the module development process.
A limitation of MCASE is that compounds containing ions,
molecular clusters (such as hydrates), and rare atoms (such as Mn,
Ca, or K) are not accepted for model generation. Consequently,
compounds containing such structural features were automatically
eliminated from the training set by the program during model
construction.

From the overall data set containing 679 data records, 100
compounds (15%; 53 negative and 47 positive compounds) were
randomly removed before model building and used as a prediction
set to assess model predictivity. A training set was created out of
the remaining 579 compounds (304 negative and 275 positive
compounds). Because of MCASE’s structural limitations, the
automatically generated MCASE model for CA-test prediction
contained 537 compounds (286 negatives and 251 positives). The
predictivity of the generated model was assessed by internal and
external validation. For the internal validation, 10 separate, non-
overlapping sets consisting of 53 compounds (10% of the training
set) were randomly selected from the training set and compiled as
test sets. The remaining 90% of the individual learning sets were
then used to predict the 53 compounds of the test set. For external
validation, the initially removed 100 compounds (prediction set)
were predicted by the MCASE model. As performance parameters,

average values for sensitivity (ratio of correctly predicted positive
compounds to all positives), specificity (ratio of correctly predicted
negative compounds to all negatives), and concordance (ratio of
correctly predicted compounds to total number of compounds) were
assessed.

Machine Learning (ML) Model. For the machine-learning
model, 10% of the data was randomly removed and used to assess
the performance of the final ML model (prediction set, see below).
The remaining 90% of the data was designated as a training set
and used for model generation.

The process of ML model generation can be separated into three
distinct processes. First, a broad set of molecular descriptors
encoding a variety of properties of the molecules are calculated
for each compound of the training set. Next, redundant information
of descriptors is removed via a process called feature selection,
resulting in a small subset of the most useful descriptors. Finally,
a classification model is built on the basis of the identified
descriptors and validated using a set of data that was not previously
included in the model-building effort.

Descriptor Generation and Feature Selection.All descriptors
used in the ML model were calculated with the dragonX software
(21) that was originally developed by Milano Chemometrics and
the QSAR Research Group. The software generates a total number
of 1664 molecular descriptors that are group into 20 different blocks,
such as constitutional descriptors, topological descriptors, and walk
and path counts (22). For each compound in the training set, all
1664 descriptors were calculated. Because many of these descriptors
are redundant or carry correlated information, feature selection
processes need to be performed in order to select the most useful
subset of descriptors to build a ML model.

Our feature selection approach follows the method of variable
importance as proposed by Breiman (23). The underlying idea is
to select descriptors on the basis of the decrease of classification
accuracy after the permutation of the descriptors (24). Briefly, an
ensemble of decision trees is built, which uses all descriptors as
input variables and associated activity (CA-test result) as output
variables using 90% of the data (training set). The prediction
accuracy of the classification model on an out of training portion
of the data (test set) is recorded. In a second step, the same is done
after the successive permutation of each descriptor. The relative
decrease of classification accuracy is the variable importance
following the idea that the most discriminative descriptors are the
most important ones. We first separately calculated the variable
importance of each descriptor of the 20 blocks of molecular
descriptors and selected the most important ones. This descriptor
set was reduced in a second iteration, resulting in a final set of 14
descriptors (Table 4).

Building the Machine Learning Classification Model. An
ensemble approach was used to build the final classification model

Table 1. Data Sets Used for Model Generation

Total Data

CA-test
positive

CA-test
negative

Kirkland et al.
(2005)

282 168

Snyder et al.
(2004)

40 189

322 (47%) 357 (53%)

MCASE Model

CA-test
positive

CA-test
negative

training set 251 286
prediction set 47 53

ML Model

CA-test
positive

CA-test
negative

training set 252 282
prediction set 70 75

Table 2. Performance Characteristics for the MCASE Model

coverageb
[%] sensitivity specificity concordance Ì2

training seta 93 52.8% 75.0% 64.9% 4.90 (p < 0.05)
prediction seta 94 56.8% 71.7% 65.1% 6.89 (p < 0.01)

a Mean values of 10 independent validations.b Percentage of 2-8 atom
fragments structurally represented in the training set.

Table 3. List of Some Significant Biophores Identified in the
MCASE Model

present in no. of cmpds

fragment CA-positive CA-negative
structural

representation

NH2-cdcH-cHd 23 4 aromatic amine
NO-N 13 1 N-nitroso
Cl-CH2 16 5 halogenated

alkane
CdC-CHdC- 13 1 R,â-unsaturated
cHdcH-cdcH-cHdcr 7 1 aromatic ring with

ET-drawing group
(e.g., NH2)

O∧-CH2 4 0 epoxide
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for the prediction of the chromosome-damaging potential of the
chemical compounds. An ensemble is the average output of several
different individual models, which were trained on different subsets
of the entire training data (sometimes called Bootstrap Aggregating
or Bagging, (25)). Building ensembles is a common way to improve
classification and regression models in terms of stability and
accuracy. We built heterogeneous ensembles consisting of several
different model classes to achieve diverse ensembles (26). The
model classes were as follows: (1) classification and regression
trees (CART), where we used the implementation in the MATLAB
Statistics Toolbox (The MathWorks, Natick, USA); (2) support
vector machines (SVM) with Gaussian kernels (28); (3) linear
discriminant analysis (LDA), quadratic discriminant analysis (QDA),
and linear ridge models (29); (4) feedforward neural networks (NN)
with two hidden layers trained with a simple gradient descend (30);
and (5) k-nearest-neighbor models (knn) with adaptive metrics (30).

The selection of the different model classes used for the
construction of the final classification model was based on cross-
validation (CV) approaches. This means that the training set (i.e.,
90% of the total data) was split randomly into a training-learning
set (80% of the data) and a training test set (20% of the data).
Each of the different model classes was then trained on the training-
learning set and assessed for their prediction accuracy on the training
test set. This procedure was repeated 21 times using a novel
randomly selected training-learning and training test set each time.
In each of the runs, only the best model (i.e., the one showing the
lowest classification error) was selected to become a member of
the final ensemble. In this way, all model classes had to compete
with each other because they are trained and tested on the same
data set. Our approach, thus, resulted in a final classification model
(the ML model) consisting of 21 individual models. The prediction
output of this ML model is based on the counting of the vote of
each of the individual 21 models and the determination of the
majority vote, which then constitutes the final prediction.

Performance Evaluation of the ML Model. In a final step,
the performance of the ML model was assessed on the entire
training set (90% of the total data) and on the 10% of data
(prediction set), which was initially removed and never included

in model building. The procedure was independently repeated 20
times. This means that all model-building processes, that is, the
random removal of 10% of the data, the construction of a
classification model ensemble on the remaining 90% of the data
as outlined above (always using the same 14 dragon descriptors
determined in the feature selection step), and the prediction of both
training and prediction sets were performed each time. For a final
output, the mean average prediction values were calculated.

For the analysis of misclassified compounds, 50 independent
model-building rounds were performed, and the number of incorrect
classifications of each compound was recorded irrespective of its
presence in the training or test sets.

Results and Discussion

On the basis of a data collection of high-quality CA-test
results of more than 650 pharmaceuticals and industrial chemi-
cals, we investigated the usefulness of two different computa-
tional approaches to predict the chromosome-damaging potential
of compounds. We used a functionality of the commercially
available MCASE system to automatically generate predictive
models from a training set of compounds with associated
qualitative (negative/positive) CA-test results. The predictivity
of an in-house prediction model built in MCASE and an in-
house machine-learning model in their ability to qualitatively
predict the outcome of the CA-test was assessed.

MCASE Prediction Model. The performance characteristics
for the MCASE prediction model are listed in Table 2. Both
the training set and prediction set were predicted with compa-
rable performances. Sensitivity values for the training set and
prediction set were 53% and 57%, respectively. Clearly, higher
values (i.e., 75% and 72%, respectively) were determined for
the correct classification ratio of inactive compounds (specific-
ity). Altogether, a concordance value of 65% was reached for
both sets.

Interestingly, the performance characteristics obtained in our
study were very similar to those reported by Rosenkranz et al.
(12), although their data set was much smaller in size (n ) 233
vs n ) 537 in our study). The Danish-EPA reports on their
website (http://www.mst.dk/) on the creation of an MCASE
model based on approximately 500 chromosome aberration test
data taken from the Ishidate data collection (31). Although
overall higher performance values for this model were reported
(76% concordance), similar unbalanced values for sensitivity
(59%) and specificity (82%) were achieved. The persistently
low sensitivity of the MCASE models indicates that the
underlying 2D-fragment-based descriptors do not sufficiently
describe the mechanism(s) leading to a positive result in the
chromosome-aberration test. One way to further assess this
possibility is the analysis of identified structural fragments that
are statistically correlated with activity (biophores).

A list of the most significant biophores identified in our
MCASE model is given in Table 3. As can be seen from the
respective structural representation, almost all identified bio-
phores represent known structural alerts for DNA reactivity. This
implies that the structural determinants that on the basis of our
MCASE analysis contribute to a positive effect in the chromo-
some aberration test reflect a direct drug-DNA (i.e., electro-
philicity) interaction and, thus, are identical to the structural
fragments identified from Ames test data (32).

The low sensitivity of the MCASE prediction model clearly
limits its application as a decision tool during lead characteriza-
tion phases. Companies developing new compounds are pri-
marily dependent on prediction tools that have a relatively low
false negative prediction rate (i.e., high sensitivity) in order to
focus further development on those compounds that are presum-

Table 4. List of DragonX Descriptors Used in the Machine-Learning
Model

descriptor ID type description

GGI5 topological charge
index

topological charge
index of order 5

IAC information
indices

information index
of atomic composition

TIC1 information
indices

total information
content index

DPO3 randic molecular
profile

randic molecular
profiles nr.3

SPO2 randic molecular
profile

shape profile nr.2

W3D geometrical 3-D Wiener index
nCs functional number of total C (sp3)
nCrs functional number of ring C (sp3)
nROH functional number of hydroxyl

groups
H4e getaway

descriptors
H autocorrelation of
lag4/weighted by
atomic Sanderson
electronegativities

R4e+ getaway
descriptors

R maximal
autocorrelation of
lag5/weighted by
atomic Sanderson
electronegativities

BID walk and path Balaban ID number
ATS6m 2D autocorrelations Broto moreau

autocorrelation of a
topological structure
lag6/weigthed by
atomic masses

MW constitutional molecular weight
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ably safe. However, false positive predictions could result in
the loss of valuable candidates. Therefore, a balanced perfor-
mance between sensitivity and specificity is desirable, resulting
in ideal predictive tools that show equally high values for
sensitivity, specificity, and concordance. This, however, is
clearly not the case for the MCASE model, where the acceptable
concordance value is primarily based on the low false positive
rate. In other words, the particular descriptor applied in MCASE
seems to be limited to pick up only one mechanism of CA
induction, that is, the direct interaction of a drug with DNA. In
order to overcome this apparent limitation, we investigated
whether the use of more complex molecular descriptors in
combination with a machine-learning approach might enable
us to generate more predictive classification models.

Machine Learning Model. Statistical learning methods, such
as support vector machines (SVM) or k-nearest-neighbor (knn)
approaches are currently being used as a new approach inin
silico toxicity prediction (33, 34). Compared to traditional QSAR
modeling approaches, statistical learning methods are often
superior in terms of performance (35). As outlined in detail in
the Materials and Methods section, we used a novel approach
by building a classification model based on a heterogeneous
ensemble of SVM, knn, neuronal networks, and other model
classes.

A list of the 14 molecular descriptors selected for model
building purposes are given in Table 4. As outlined in detail in
the Materials and Methods section, these 14 descriptors were
selected from more than 1600 dragonX descriptors after
eliminating those that are redundant and choosing those that
had the highest impact for classification. Several of the identified
descriptors can be directly related to genotoxicity and, thus,
present a mechanistically sound basis of the molecular features.
Several functional descriptors as well as (electro)topological
indices specify characteristics of structures involved in DNA
modifications. Generic descriptors, such as geometrical and
general information indices, describe the shape, size, and
composition of molecules. A recent study on the prediction of
genotoxicity by using statistical methods, such as SVMs and
knn, indicates that such generic descriptors can be valuable for
describing the DNA-reactive property of compounds (33).
Molecular weight was selected as a discriminating feature
probably because of the heterogeneous data base, consisting of
many small organic chemicals that are chromosome-damaging
(10) and an equally large amount of pharmaceutical compounds
that are mostly not chromosome-damaging (16).

The performance values of our machine-learning model for
the training set and prediction set are given in Table 5. As
outlined in Materials and Methods, 20 independent cross
validations were performed by removing each time 10% of the
data (prediction set), building the ML model using the remaining
90% of the data (training set), and then predicting the removed
compounds. The values for true positive, false negative, true
negative, and false positive predictions of both training and
prediction sets as well as for the other performance character-
istics outlined in Table 5, thus, represent the mean( standard
deviation of 20 independent evaluations. Compared to the data
obtained with the MCASE model, the ML approach led to a
clearly improved prediction of CA-positive compounds (53%

vs 75% for the training set), resulting in a balanced prediction
model with almost equal performance values for sensitivity,
specificity, and concordance.

Although this improvement reflects the usefulness of applying
various molecular features as discriminators for the prediction
of chromosome-damaging potential, a comparison with the
values reported by Serra et al. (13) might lead to the conclusion
that our ML model has a lower performance. However, a direct
comparison of performance values between this study and Serra
et al. (13) is difficult because of the differences in the data set
and statistical evaluations. As mentioned before, Serra et al.
used a smaller (and structurally less diverse) prediction set in
which the proportion of known chromosome-damaging com-
pounds was lower than that in our study (11 out of 37
compounds vs 70 out of 145 in our study). Thus, it remains
open as to whether similarly good performance values would
be achieved if a more extensive prediction set containing more
CA-test positive compounds had been used. Second, the model
characteristics described by Serra et al. seem to be based on a
single cross-validation effort only, whereas we used a 20-fold
CV to perform our validation procedure.

Despite these differences in model construction, we attempted
to get a more objective comparison of the predictive value of
our ML model by applying it to the compound data used by
Serra et al. (13). In order to not be biased by our training set,
only those compounds that were not included in our training
set were extracted and, thus, represent novel compounds.
Altogether, 291 compounds fulfilled this criterion, out of which
74 were reported with a positive result. These compounds were
then collected as sd files, computed with our set of 14 molecular
descriptors. and classified using our ML model. The resulting
performance characteristics are given in Table 6 in comparison
to the values reported by Serra et al. (13). Because the selected
compounds were not previously included in our ML model, they
can be seen as an independent prediction set, which we
compared to our data. Overall, this comparison shows that our
ML model reaches comparable prediction accuracies to those
of the learning models reposted by Serra et al., although the
latter were trained on a structurally less diverse set of com-
pounds. Nevertheless, the sensitivity of our ML model clearly
outscores the performance characteristics of the knn and SVM
models.

Although tentative in nature, several conclusions can be drawn
from this comparison. First, it is reasonable to assume that the
lower prediction accuracies observed with our test set data
compared to that of Serra et al. (13) is a consequence of the
extension of the chemical space in our training set by adding a
significant amount of pharmaceutical compounds to the less
drug-like compounds contained in the Kirkland data set (10).

Table 5. Performance Characteristics for the Machine-Learning Model

TPa FN TN FP sensitivity specificity concordance

training setb 190( 10 65( 7 215( 10 63( 7 75.1% 76.8% 76.0%
prediction setb 46 ( 5 20( 5 50( 5 18( 5 70.8% 71.4% 71.6%

a TP, true positive; FN, false negative; TN, true negative; FP, false positive.b Values represent mean( SD of 20 independent validations.

Table 6. Performance Comparison between the Present ML model
and the knn and SVM models published by Serra et al. (13)

sensitivity specificity

knna 72.7% 92.3%
SVMa 72.7% 88.5%
ML modelb 90.5% 92.7%

a Values taken from Serra et al. (13). b Only part of the Serra dataset
was used for the analysis. For further details, see the Results and Discussion
section.
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Because the majority of CA-test positive compounds in our
study originates from the Kirkland data compilation, which from
a chemical diversity point of view resembles the Serra data, it
is not surprising that our ML model performs particularly well
in terms of sensitivity on the latter data set. The development
of prediction models for diverse data sets, such as those in our
study, is generally considered to be problematic (36), and in
theory, the construction of two local models (i.e., one for each
data set) would have been favorable. Such an approach,
however, is currently not feasible, because only few CA-test
positive data for drug-like compounds are publicly available,
and sufficiently large training sets for CA-test modeling,
therefore, need to be compiled from structurally diverse
compounds, as has been done in our study.

Given the structural diversity of our training set used for
model construction, we investigated whether our ML model
performed differently on the two underlying data sets. As a
measure for predicting accuracy, we determined the number of
misclassifications for each compound of both data sources in
50 independent evaluations. This means that an ML model was
generated 50 times, and in each run, the classification result
(i.e., true or false) was recorded for each compound. A
compound that was correctly predicted in all of the 50 runs
would, thus, be categorized with zero misclassifications, whereas
a compound showing 50 misclassifications would have always
been predicted incorrectly. The results of this exercise are shown
in Figure 1. As can be seen, almost 70% of all compounds from
the pharmaceutical class (16) were correctly predicted in 50 out
of 50 evaluations (i.e., zero misclassifications). In comparison,
the same was true for less than 60% of the less drug-like class
(10). However, approximately 10% of pharmaceuticals were
never predicted correctly (50 misclassifications), which to a
slightly higher degree was also true for the Kirkland compounds.
Altogether, it can be stated that compounds from the pharma-
ceutical class were predicted with higher accuracies than those
from the less drug-like class.

Of the 20 compounds from the pharmaceutical class that were
consistently misclassified in all 50 evaluations, 15 are false
negatives, that is, a chromosome-damaging potential was missed.
These 15 false negatives are listed in Table 7. Compounds were
incorrectly classified as chromosome-damaging (false positives)

in only five cases (not listed). Mechanistic information on a
possible mode of action of chromosome-damage induction of
the 15 known genotoxic compounds is limited. Most of the
compounds do not contain structural alerts for mutagenicity,
suggesting that they do not primarily act genotoxic through
direct drug-DNA interaction. A review of other mutagenicity
test results obtained for the false-negative-predicted compounds
shows 5 out of 14 compounds (no mutagenicity data were
available for imipramine) were also tested positive in an Ames
test, suggesting a genotoxic potential that was missed by our
ML model. Surprisingly, 9 out of the 14 compounds were tested
positive uniquely in the CA-test, whereas they yielded negative
results in the Ames-test and the in vivo mouse micronucleus
test (Table 7). This suggests that the positive CA-test result of
these misclassified compounds might not be due to an inherent
genotoxic potential but instead induced by biologically non-
significant effects detected by this test system.

As outlined before, nonphysiological stimuli during cell
culture can lead to structural chromosome aberrations (9). It is
likely that other yet unknown mechanisms that are not directly
related to the chemical structure can result in a (biologically
not significant) positive result in the CA-test. Because these
artificial effects are not directly related to the chemical structure
of the compound, they are not amenable to modeling and,
therefore, automatically decrease the predictivity of computa-
tional models applied to such data.

In conclusion, our data show that the chromosome-damaging
potential of pharmaceuticals can be predicted using machine-
learning approaches, albeit with lower predictivity than that
previously reported for industrial chemicals (13). Nevertheless,
the inclusion of a significant amount of pharmaceutical com-
pounds into our model and the concomitant expansion of the
chemical space covered by the model now makes it a potentially
useful tool that can be incorporated in compound selection
processes during early phases of drug development. A balanced
prediction accuracy of 70-75% is sufficiently high during these
developmental phases to filter out potential genotoxic com-
pounds. Together with an experimental screening test (e.g., the
in Vitro micronucleus test) for the follow-up testing of com-
pounds with a negative call, such a tool can significantly

Figure 1. Percentage of compounds from both data sources (Kirkland
et al., (10); Snyder et al. (16)) plotted against the number of incorrect
predictions (misclassification) in a series of 50 independent evaluations.
A compound that was correctly predicted in all of the runs, thus, falls
into the group of zero misclassifications, whereas a consistently
incorrect predicted compound is classified into the group of 50
misclassifications.

Table 7. List of 15 False Negative Classified Pharmaceuticals

compd CAS
other genotoxicity

informationa,b

Chloroquine 54-05-7 Ames positive
Citalopram 59729-33-8 Ames positive
Clofibrate 637-07-0 Ames negative
Deoxycycline 7261-97-4 Ames negative

BM negative
Fosinopril 98048-97-6 Ames negative

BM negative
Fosphenytoin 93390-81-9 Ames negative

BM negative
Imatinib 152459-95-5 Ames negative

BM negative
Imipramine 50-49-7 N/A
Letrozole 112809-51-5 Ames negative

BM negative
Oxacarbazepine 28721-07-5 Ames positive
Pentoxyphyline 6493-05-6 Ames negative

BM negative
Rivastigmine 123441-03-2 Ames negative

BM negative
Temozolomide 85622-93-1 Ames positive
Tiagabine 115103-54-3 Ames negative

BM negative
Ziprasidone 146939-27-7 Ames positive

a Genotoxicity information taken from Snyder et al. (10). b Ames, Ames
test; BM, mouse bone marrow micronucleus test; N/A: not available.
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contribute to a more targeted development of non-genotoxic drug
candidates. In addition, given the high concordance between
the in Vitro micronucleus test and the CA-test, data obtained
during the experimental screening of drug compounds could
be fed back in order to train improved models solely based on
drug-like compounds.
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