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We report on the generation of computer-based models for the prediction of the chromosome-damaging
potential of chemicals as assessed in itheitro chromosome aberration (CA) test. On the basis of
publicly available CA-test results of more than 650 chemical substances, half of which are drug-like
compounds, we generated two different computational models. The first model was realized using the
(Q)SAR tool MCASE. Results obtained with this model indicate a limited performance (53%) for the
assessment of a chromosome-damaging potential (sensitivity), whereas CA-test negative compounds were
correctly predicted with a specificity of 75%. The low sensitivity of this model might be explained by
the fact that the underlying 2D-structural descriptors only describe part of the molecular mechanism
leading to the induction of chromosome aberrations, that is, direct-dDIA interactions. The second
model was constructed with a more sophisticated machine learning approach and generated a classification
model based on 14 molecular descriptors, which were obtained after feature selection. The performance
of this model was superior to the MCASE model, primarily because of an improved sensitivity, suggesting
that the more complex molecular descriptors in combination with statistical learning approaches are better
suited to model the complex nature of mechanisms leading to a positive effect in the CA-test. An analysis
of misclassified pharmaceuticals by this model showed that a large part of the false-negative predicted
compounds were uniquely positive in the CA-test but lacked a genotoxic potential in other mutagenicity
tests of the regulatory testing battery, suggesting that biologically nonsignificant mechanisms could be
responsible for the observed positive CA-test result. Since such mechanisms are not amenable to modeling
approaches it is suggested that a positive prediction made by the model reflects a biologically significant
genotoxic potential. An integration of the machine-learning model as a screening tool in early discovery
phases of drug development is proposed.

Introduction genotoxicity. Such screening strategies primarily relyronitro
assays, which often represent a cut down version of the re-

of new compounds play a pivotal role during hit validation and spective regulatory tests (e.g., Ames Il) or make use of alter-

o . native assays (e.g., the in vitro micronucleus test for the detec-
lead characterization phases of drug development in pharma-,. S
tion of chromosomal damage). In principle, the concordance

ceutical companies. Traditionally, the assessment of the 9€N0y etween screening assays and regulatory tests is relatively high

toxic potential of drug substances was typically performed 2, 3). However, in particular with respect to screening assays
during early developmental stages by conducting a standard sef P 1N P P ) 9 Y
or chromosomal damage, they are at best medium throughput

(battery) of genotoxicity tests that support the submission of and as such their use in early discovery stages is restricted
novel drugs to regulatory agencies. As outlined in the respective y ry stag .
because of costs and compound availability. Additionally,

PR : .
ICH" guidelines 1), this standard set generally consists of a genotoxicity screens might be biased by the frequent presence

bacterial gene mutation test (Ames test)jranitro cytogenetic f R i | | h drua batches leadi
assay in mammalian cells for the detection of chromosomal of (geno QXIC) Impurities in early research drug baitches leading
to potentially false positive results.

damage (e.g., a chromosome aberration (CA-) test) and an
vivo cytogenetic assay in rodent hematopoietic cells. As an alternative, computationah(silico) structure-activity
Today, pre-regulatory genotoxicity tests are frequently per- models have gained increasing importance in the assessment
formed in pharmaceutical companies because of increasedof a genotoxic potential. They have the clear advantage that no
compound throughput and in order to avoid late stage termina- compound is needed for testing and that they can be applied in
tion of a cost-intensive drug development due to unforeseen a true high-throughput manner. Computational programs used
for genotoxicity prediction are mainly focusing on the prediction

Screening approaches for determining the genotoxic potential
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However, in contrast to the Ames test prediction, no models compounds tested positive in the CA-test, and thus, it seems
with comparable performance are currently available for the CA- questionable as to whether similar performance characteristics
test. Several reasons might account for this situation. The goodand conclusions had been obtained using a more balanced data
correlation for the Ames test is based on the abundance ofset containing equal numbers of active and inactive compounds.
(publicly) available data for this test system as well as on the Second, the structural diversity (chemical space) of compounds
fact that most of the molecular mechanisms underlying this represented in the MCASE and machine learning moti2| (
genetic endpoint are fairly well understood and can be directly 13) is clearly limited to mainly organic compounds, such as
related to the chemical structur)( The situation is clearly = agrochemicals, known carcinogens, and industrial chemicals.
more complex for the CA-test. It is well-established that different It was already noticed during the course of Ames-test modeling
mechanisms can lead to the microscopically visible formation that computational models, which were predominantly con-
of aberrant chromosomes. Structural chromosome aberrationsstructed using industrial and environmental compounds, per-
can be formed by direct drugDNA interactions as a result of  formed in a clearly poorer manner when applied to pharma-
incorrect DNA repair processe8)(or an interaction of drugs  ceutical compoundslé—16). This is an important implication
with enzymes involved in DNA replication and transcription if a computational prediction model for the CA-test has to be
(7). Numerical chromosome aberrations such as the gain or lossdeveloped as a screening tool during early drug discovery.
of chromosomes are generally a result of the interaction with  |n the present study, we therefore aimed to construct and eval-
cellular proteins involved in chromosome segregatigh (n uate two different computational models based on a heteroge-
addition, it is well-known that nonphysiological stimuli during  neous data set including a significant number of pharmaceutical
cell culture, such as those induced by excessive cytotoxicity, compounds to be used in genotoxicity screening approaches in
osmolarity, pH and temperature, can also lead to structural a pharmaceutical environment. The recent publication of two
chromosome aberration8)( data collections1(0, 16) containing qualitative CA-test informa-

Furthermore, the CA-test is experimentally less standardizedtion on more than 650 compounds, including a significant
than the Ames test (i.e., different cells from different species humber of pharmaceuticals and drug-like compounds, allowed
are used), and publicly available experimental data is signifi- us to readdress the issue of modeling a chromosome-damaging
cantly less abundant than Ames test data and almost purelypotential on the basis of the largest high-quality data collection
qualitative (i.e., aberration frequencies are hardly available). currently publicly available.

Most importantly, the quality of available CA-test data is

frequently compromised by incomplete assay data sets and Materials and Methods
differences in the judgment of a positive effect, in particular in _ o
the presence of cytotoxicityl(). High-qualitative CA-test data CA-Test Data Information. The CA-test data used in this study

might, in principle, be derived from publicly available data on Were obtained from two recently published data collectidt (
pharmaceuticals because they are likely to be conducted usin 6). Further details on the original data source can be obtained

ICH and GLP-compliant methods. However, such public data ro_rrnhthe refere_nf:esdof botl|1| da_ta c;ompganc;ns. 46 .
are relatively scarce, and in particular, the number of positive . . e genotoxicity data collection from Snyder et abYcontains
results is limited. in vitro cytogenetics data for 248 marketed pharmaceuticals, with

positive (i.e., chromosome-damaging) results being reported for
Consequently, only few publications are available in which 48/248 compounds (19%). Structural information could be retrieved

the performance of computational models for the prediction of for 229 of the 248 compounds. Altogether, 189 negative and 40

CA-test data has been assessed. Using the MULTICASE positive data records from this data source could be used for model-

(MCASE, Beachwood, USA) methodology for constructing building purposes. As outlined in the article§] and described in

experimental databases that can be used to predict the bioactivitynore detail in a previous collection efford®), the in vitro

of compounds, Rosenkranz et dl1) reported the construction cytogenetic data represents CA-test results obtained with diverse

) o cell types (Chinese hamster ovary cells, Chinese hamster lung cells,
of a CA-test prediction model based on 233 compounds. These,V79 cells, MCL-5 human lymphoblastoid cells, and human blood

mostly organic compounds, were assessed in a CA-test as parheinheral lymphocytes). Despite this obvious methodological
of the National Toxicology Program (NTP), with approximately giversity, the overall quality of the data set and the reliability of
40% of the compounds being tested positive. Using an internal the test result are judged to be high because the data has been
validation strategy, the observed sensitivity and specificity (i.e., generated according to standardized ICH- and GLP-compliant
the correct prediction of positives and negatives, respectively) methods.
of the model were 53% and 71%, respectivel@)( The CGX database collected by Kirkland et dl0) contains
More recently, Serra et all8) reported on the generation of ~ CA-test data for 488 structurally diverse compounds, consisting of
an automated machine-learning approach to generate classifica'-”dusmalv environmental, and _pharmaceutlcal compounds. _Out of
tion models for the prediction of CA-test data. Support vector & fofal number of 488 chemicals, 292 (60%) were considered
machines (SVM) and k-nearest neighbor (knn) models were positive, and 28 were judged to be equivocal. The latter were

. excluded from our model building. Structural information was
developed on a set of molecular descriptors calculated for 346 o yjeyed for 450 out of the 460 remaining compounds. Altogether,

mostly organic compounds (29% positives). Using a prediction 168 negative and 282 positive data records from this data source
set of 37 Compounds that were not included in model formation, could be used for model-building purposes. Similar to the Snyder
sensitivity and specificity values of 73% and 92%, respectively, CA-test collection, results obtained with all cell types are included
were obtained for knn classification models. Similar values were in this compilation. With respect to data quality, considerable effort
obtained for SVM models. was undertaken to review collected test resul® uggesting an
: - overall consistent evaluation of test data. In order to estimate the
Despite the respectable performance Cha.rac'Ferls.tllc, of thenumber of drug-like compounds contained in this dataset, we
latter model'ln partlpular, their value for a routine in silico CA- analyzed all 450 compounds for drug-likeness using a proprietary
test screening during early drug development seems to bejn_house software based on the model proposed by Sadowski and
qUeSUOﬂable. FII’St, the number of CA-test pOSItlve Compounds Kub|ny| (18) Less than one-third of the Compounds taken from
used for model building and evaluation in the Serra mo#i@) (  Kirkland et al. (L0) were considered as drug-like (data not shown),
appears to be critically low. Less than one-third of the thus confirming that both data sources can roughly be separated



Modeling of Chromosome-Aberration-Test Data Chem. Res. Toxi€ol.

Table 1. Data Sets Used for Model Generation Table 2. Performance Characteristics for the MCASE Model
Total Data coverage L s
[%]  sensitivity specificity concordance X2
g()AS:ittievsé r?epégz\s,; trainingset 93 528%  750%  64.9%  4.9p( 0.05)
prediction set 94 56.8%  71.7% 65.1% 6.8 0.01)
Kirkland et al. 282 168 . S
(2005) aMean values of 10 independent validatioh®ercentage of 28 atom
Snyder et al. 40 189 fragments structurally represented in the training set.
(2004) . - . L
Table 3. List of Some Significant Biophores Identified in the
0, 0,
322 (47%) 357 (53%) MCASE Model
MCASE Model present in no. of cmpds structural
CA-test CA-test fragment CA-positive CA-negative representation
positive negative - -

— NH2-c=cH-cH= 23 4 aromatic amine
training set 251 286 NO-N 13 1 N-nitroso
prediction set 47 53 CI-CH2 16 5 halogenated

alkane
ML Model C=C-CH=C- 13 1 o,B-unsaturated
CA-test CA-test CH=cH-c=cH-cH=c— 7 1 aromatic ring with
positive negative ET-drawing group

- e.g., NH2)
training set 252 282 . ( )
prediction set 70 75 0"-CH2 4 0 epoxide

. . . . average values for sensitivity (ratio of correctly predicted positive
Into drug(—jllke (6) and less drug-like (Kirkland et al., 2005)  ompounds to all positives), specificity (ratio of correctly predicted
compounds. negative compounds to all negatives), and concordance (ratio of

As summarized in Table 1, 679 compounds were used in total ¢qrrectly predicted compounds to total number of compounds) were
for model generation, of which 322 tested positive (47%) and 357 ggsessed.

tested negative (53%) in the CA-test. S Machine Learning (ML) Model. For the machine-learning
Collection of Structures. CAS numbers of identified substances  model, 10% of the data was randomly removed and used to assess
were collected from the respective data collectiob@ (L6) and the performance of the final ML model (prediction set, see below).

queried in the MDL Toxicity database (MDL Information Systems The remaining 90% of the data was designated as a training set
Inc., San Leandro, CA). The retrieved chemical structures were and used for model generation.
stored as an sd file (MDL ISIS sdf file). For MCASE prediction The process of ML model generation can be separated into three
model construction, SMILES notations of all compounds were distinct processes. First, a broad set of molecular descriptors
generated by running the sd files through an existing prediction encoding a variety of properties of the molecules are calculated
module in MCASE (Muticase Inc, Beachwood, OH), which for each compound of the training set. Next, redundant information
generated a text file containing the respective SMILES code of the of descriptors is removed via a process called feature selection,
queried compounds. resulting in a small subset of the most useful descriptors. Finally,
Model Construction and Validation in MCASE. A hallmark a classification model is built on the basis of the identified
of the MCASE software is its capability to automatically generate descriptors and validated using a set of data that was not previously
prediction modules on the basis of structural information and included in the model-building effort.
associated bioactivity 19). Details on model generation and Descriptor Generation and Feature SelectionAll descriptors
software algorithms are published elsewhet®).(In essence, the  used in the ML model were calculated with the dragonX software
program identifies structural fragments, ranging from 2 to 10 atoms (21) that was originally developed by Milano Chemometrics and
length, in combination with2D distances between atoms, which are the QSAR Research Group. The software generates a total number
statistically correlated with activity (biophores) and inactivity of 1664 molecular descriptors that are group into 20 different blocks,
(biophobes), respectively. In addition, the program detects fragmentssuch as constitutional descriptors, topological descriptors, and walk
that act as modulators of activity and takes into account basic and path counts2@). For each compound in the training set, all
physicochemical descriptors for the module development process.1664 descriptors were calculated. Because many of these descriptors
A limitation of MCASE is that compounds containing ions, are redundant or carry correlated information, feature selection
molecular clusters (such as hydrates), and rare atoms (such as Mnprocesses need to be performed in order to select the most useful
Ca, or K) are not accepted for model generation. Consequently, subset of descriptors to build a ML model.
compounds containing such structural features were automatically  Our feature selection approach follows the method of variable
eliminated from the training set by the program during model importance as proposed by Breima8) The underlying idea is
construction. to select descriptors on the basis of the decrease of classification
From the overall data set containing 679 data records, 100 accuracy after the permutation of the descript@4.(Briefly, an
compounds (15%; 53 negative and 47 positive compounds) wereensemble of decision trees is built, which uses all descriptors as
randomly removed before model building and used as a prediction input variables and associated activity (CA-test result) as output
set to assess model predictivity. A training set was created out of variables using 90% of the data (training set). The prediction
the remaining 579 compounds (304 negative and 275 positive accuracy of the classification model on an out of training portion
compounds). Because of MCASE's structural limitations, the of the data (test set) is recorded. In a second step, the same is done
automatically generated MCASE model for CA-test prediction after the successive permutation of each descriptor. The relative
contained 537 compounds (286 negatives and 251 positives). Thedecrease of classification accuracy is the variable importance
predictivity of the generated model was assessed by internal andfollowing the idea that the most discriminative descriptors are the
external validation. For the internal validation, 10 separate, non- most important ones. We first separately calculated the variable
overlapping sets consisting of 53 compounds (10% of the training importance of each descriptor of the 20 blocks of molecular
set) were randomly selected from the training set and compiled asdescriptors and selected the most important ones. This descriptor
test sets. The remaining 90% of the individual learning sets were set was reduced in a second iteration, resulting in a final set of 14
then used to predict the 53 compounds of the test set. For externaldescriptors (Table 4).
validation, the initially removed 100 compounds (prediction set) Building the Machine Learning Classification Model. An
were predicted by the MCASE model. As performance parameters, ensemble approach was used to build the final classification model
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Table 4. List of DragonX Descriptors Used in the Machine-Learning
Model

in model building. The procedure was independently repeated 20
times. This means that all model-building processes, that is, the

descriptor ID type description random removal of 10% of the data, the construction of a
e tonological ch tonological ch classification model ensemble on the remaining 90% of the data
o e o as outlined above (always using the same 14 dragon descriptors
IAC information information index det_e_rmined in the_ fe_ature selection step), and the pr_ediction of t_)oth
indices of atomic composition training and prediction sets were performed each time. For a final
TIC1 information total information output, the mean average prediction values were calculated.
indices content index For the analysis of misclassified compounds, 50 independent
DPO3 randic molecular randic molecular model-building rounds were performed, and the number of incorrect
profile profiles nr.3 classifications of each compound was recorded irrespective of its
SPO2 rar;_clilc molecular shape profile nr.2 presence in the training or test sets.
profile
W3D geometrical 3-D Wiener index . .
nCs functional number of total C (sp3) Results and Discussion
nCrs functional number of ring C (sp3) i . . .
NROH functional number of hydroxyl On the basis of a data collection of high-quality CA-test
groups ' results of more than 650 pharmaceuticals and industrial chemi-
Hde getaway FaUtOCQFrf]e'at'On of cals, we investigated the usefulness of two different computa-
descriptors ;gx‘i’ges'%;ggrggn tional approaches to predict the chromosome-damaging potential
electronegativities of c'ompounds. We used a functiona}lity of the commerqia!ly
Raet getaway R maximal available MCASE system to automatically generate predictive
descriptors autocorrelation of models from a training set of compounds with associated
Zﬂ%ﬁeé%ﬁgrggn qualitative (negative/positive) CA-test results. The predictivity
electronegativities of an |n-hou§e pred|qt|on mode! bU|It.|n MQASE anq an in-
BID walk and path Balaban ID number house machine-learning model in their ability to qualitatively
ATS6m 2D autocorrelations Broto moreau predict the outcome of the CA-test was assessed.
?Utolcor.r e"'l"t'?” Otf a MCASE Prediction Model. The performance characteristics
lggg/\c,’gg’t‘h;;ubcyure for the MCASE prediction model are listed in Table 2. Both
atomic masses the training set and prediction set were predicted with compa-
MW constitutional molecular weight rable performances. Sensitivity values for the training set and

prediction set were 53% and 57%, respectively. Clearly, higher
for the prediction of the chromosome-damaging potential of the values (i.e., 75% and 72%, respectively) were determined for
chemical compounds. An ensemble is the average output of severathe correct classification ratio of inactive compounds (specific-

different individual models, which were trained on different subsets jty). Altogether, a concordance value of 65% was reached for
of the entire training data (sometimes called Bootstrap Aggregating poth sets.

or Bagging, 25)). Building ensembles is a common way to improve

classification and regression models in terms of stability and tudy were very similar to those reported by Rosenkranz et al
accuracy. We built heterogeneous ensembles consisting of sever y Y P y )

a . i

different model classes to achieve diverse ensemtsigs The ?12)’ although their data set was much smaller in size-233
model classes were as follows: (1) classification and regressionVS N = 537 in our study). The Danish-EPA reports on their
trees (CART), where we used the implementation in the MATLAB Website (http://www.mst.dk/) on the creation of an MCASE
Statistics Toolbox (The MathWorks, Natick, USA); (2) support model based on approximately 500 chromosome aberration test
vector machines (SVM) with Gaussian kerneB)( (3) linear data taken from the Ishidate data collecti@1)( Although
discriminant analysis (LDA), quadratic discriminant analysis (QDA), overall higher performance values for this model were reported
and linear ridge model9); (4) feedforward neural networks (NN) (769 concordance), similar unbalanced values for sensitivity
with two hidden layers trained with a simple gradient desc@Wl ( (5904) and specificity (82%) were achieved. The persistently
and (5) k-nearest-neighbor models (knn) with adaptive me®@s (|, sensitivity of the MCASE models indicates that the

The selection of the different model classes used for the ynderlying 2D-fragment-based descriptors do not sufficiently
construction of the final classification model was based on cross- yascripe the mechanism(s) leading to a positive result in the
validation (CV) approaches. This means that the training set (i.e., chromosome-aberration test. One way to further assess this

90% of the total data) was split randomly into a training-learnin S . . "
set (80% of the data)) and aptraining te)s/t set (20% ofgthe datg). pOSS|b|I|_ty_|s the analysis of "?'e”“f"?‘?' struptural fragments that
are statistically correlated with activity (biophores).

Each of the different model classes was then trained on the training-
learning set and assessed for their prediction accuracy on the training A list of the most significant biophores identified in our
test set. This procedure was repeated 21 times using a novelMCASE model is given in Table 3. As can be seen from the
randomly selected training-learning and training test set each time.respective structural representation, almost all identified bio-
In each of the runs, only the best model (i.e., the one showing the phores represent known structural alerts for DNA reactivity. This
lowest classification error) was selected to become a member ofimplies that the structural determinants that on the basis of our
the final ensemble. In this way, all model classes had to compete pcaASE analysis contribute to a positive effect in the chromo-

data sct Ot approach, thus, josuted n & finalclassiication model SOMe aberration test reflect a direct drigNA (i, electro-
' pp y ’ philicity) interaction and, thus, are identical to the structural

Interestingly, the performance characteristics obtained in our

(the ML model) consisting of 21 individual models. The prediction

output of this ML model is based on the counting of the vote of
each of the individual 21 models and the determination of the
majority vote, which then constitutes the final prediction.

Performance Evaluation of the ML Model. In a final step,

fragments identified from Ames test da2).

The low sensitivity of the MCASE prediction model clearly
limits its application as a decision tool during lead characteriza-
tion phases. Companies developing new compounds are pri-

the performance of the ML model was assessed on the entiremarily dependent on prediction tools that have a relatively low
training set (90% of the total data) and on the 10% of data false negative prediction rate (i.e., high sensitivity) in order to
(prediction set), which was initially removed and never included focus further development on those compounds that are presum-
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Table 5. Performance Characteristics for the Machine-Learning Model

TP FN TN FP sensitivity specificity concordance
training set 190+ 10 65+ 7 215+ 10 63+ 7 75.1% 76.8% 76.0%
prediction séet 46+5 20+5 50+5 18+ 5 70.8% 71.4% 71.6%

aTP, true positive; FN, false negative; TN, true negative; FP, false positivalues represent meah SD of 20 independent validations.

Table 6. Performance Comparison between the Present ML model
and the knn and SVM models published by Serra et al. 13)

sensitivity specificity

ably safe. However, false positive predictions could result in
the loss of valuable candidates. Therefore, a balanced perfor
mance between sensitivity and specificity is desirable, resulting
in ideal predictive tools that show equally high values for knm? 72.7% 92.3%

sensitivity, specificity, and concordance. This, however, is ’\SA\IiMa delb 72'78/" 88'5;’/"

clearly not the case for the MCASE model, where the acceptable mode 90.5% 92.7%
concordance value is primarily based on the low false positive  *Values taken from Serra et alld). ® Only part of the Serra dataset
rate. In other words, the particular descriptor applied in MCASE was used for the analysis. For further details, see the Results and Discussion
seems to be limited to pick up only one mechanism of CA section-

induction, that is, the direct interaction of a drug with DNA. In .5 750, for the training set), resulting in a balanced prediction
order to overcome this apparent limitation, we investigated \,5qel with almost equal performance values for sensitivity,
Whether j[he use of more comple.x molecular de§criptors in specificity, and concordance.
combination with a machine-learning approach might enable  ajthough this improvement reflects the usefulness of applying
us to generate more predictive classification models. various molecular features as discriminators for the prediction
Machine Learning Model. Statistical learning methods, such ¢ chromosome-damaging potential, a comparison with the
as support vector machines (SVM) or k-nearest-neighbor (knn) yajyes reported by Serra et a3 might lead to the conclusion
approaches are currently being used as a new approach in  that our ML model has a lower performance. However, a direct
silico toxicity prediction 83, 34). Compared to traditional QSAR  comparison of performance values between this study and Serra
modeling approaches, statistical learning methods are oftenet a|. (13) is difficult because of the differences in the data set
superior in terms of performanc8). As outlined in detail in  ang statistical evaluations. As mentioned before, Serra et al.
the Materials and Methods section, we used a novel approachysed a smaller (and structurally less diverse) prediction set in
by bU|Id|ng a classification model based on a heterogeneoUSWhich the proportion of known Chromosome-damaging com-
ensemble of SVM, knn, neuronal networks, and other model pounds was lower than that in our study (11 out of 37
classes. compounds vs 70 out of 145 in our study). Thus, it remains
A list of the 14 molecular descriptors selected for model open as to whether similarly good performance values would
building purposes are given in Table 4. As outlined in detail in be achieved if a more extensive prediction set containing more
the Materials and Methods section, these 14 descriptors wereCA-test positive compounds had been used. Second, the model
selected from more than 1600 dragonX descriptors after characteristics described by Serra et al. seem to be based on a
eliminating those that are redundant and choosing those thatsingle cross-validation effort only, whereas we used a 20-fold
had the highest impact for classification. Several of the identified CV to perform our validation procedure.
descriptors can be directly related to genotoxicity and, thus, Despite these differences in model construction, we attempted
present a mechanistically sound basis of the molecular featuresto get a more objective comparison of the predictive value of
Several functional descriptors as well as (electro)topological our ML model by applying it to the compound data used by
indices specify characteristics of structures involved in DNA Serra et al. 13). In order to not be biased by our training set,
modifications. Generic descriptors, such as geometrical andonly those compounds that were not included in our training
general information indices, describe the shape, size, andset were extracted and, thus, represent novel compounds.
composition of molecules. A recent study on the prediction of Altogether, 291 compounds fuffilled this criterion, out of which
genotoxicity by using statistical methods, such as SVMs and 74 were reported with a positive result. These compounds were
knn, indicates that such generic descriptors can be valuable forthen collected as sd files, computed with our set of 14 molecular
describing the DNA-reactive property of compoundi3)( descriptors. and classified using our ML model. The resulting
Molecular weight was selected as a discriminating feature performance characteristics are given in Table 6 in comparison
probably because of the heterogeneous data base, consisting ab the values reported by Serra et a3, Because the selected
many small organic chemicals that are chromosome-damagingcompounds were not previously included in our ML model, they
(10) and an equally large amount of pharmaceutical compoundscan be seen as an independent prediction set, which we
that are mostly not chromosome-damagitg)( compared to our data. Overall, this comparison shows that our
The performance values of our machine-learning model for ML model reaches comparable prediction accuracies to those
the training set and prediction set are given in Table 5. As of the learning models reposted by Serra et al., although the
outlined in Materials and Methods, 20 independent cross latter were trained on a structurally less diverse set of com-
validations were performed by removing each time 10% of the pounds. Nevertheless, the sensitivity of our ML model clearly
data (prediction set), building the ML model using the remaining outscores the performance characteristics of the knn and SVM
90% of the data (training set), and then predicting the removed models.
compounds. The values for true positive, false negative, true Although tentative in nature, several conclusions can be drawn
negative, and false positive predictions of both training and from this comparison. First, it is reasonable to assume that the
prediction sets as well as for the other performance character-lower prediction accuracies observed with our test set data
istics outlined in Table 5, thus, represent the meastandard compared to that of Serra et all3) is a consequence of the
deviation of 20 independent evaluations. Compared to the dataextension of the chemical space in our training set by adding a
obtained with the MCASE model, the ML approach led to a significant amount of pharmaceutical compounds to the less
clearly improved prediction of CA-positive compounds (53% drug-like compounds contained in the Kirkland data 4€).(
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Table 7. List of 15 False Negative Classified Pharmaceuticals
@ I Compounds from Kirkland et al. (70) —
1 =71 Compounds from Snyder et al. (16) other genotoxicity
= compd CAS informatiorft
=3
K] Chloroquine 54-05-7 Ames positive
2 Citalopram 59729-33-8 Ames positive
2 Clofibrate 637-07-0 Ames negative
g Deoxycycline 7261-97-4 Ames negative
5 BM negative
‘5 Fosinopril 98048-97-6 Ames negative
= BM negative
§ Fosphenytoin 93390-81-9 Ames negative
o BM negative
E Imatinib 152459-95-5 Ames negative
k= BM negative
el Imipramine 50-49-7 N/A
Letrozole 112809-51-5 Ames negative
: ; . BM negative
20 40 60 80 Oxacarbazepine 28721-07-5 Ames positive
% compounds Pentoxyphyline 6493-05-6 Ames negative
BM negative
Figure 1. Percentage of compounds from both data sources (Kirkland Rivastigmine 123441-03-2 Ames negative
et al., (LO); Snyder et al. 16)) plotted against the number of incorrect BM negative
predictions (misclassification) in a series of 50 independent evaluations.  Temozolomide 85622-93-1 Ames positive
A compound that was correctly predicted in all of the runs, thus, falls Tiagabine 115103-54-3 Ames negative
into the group of zero misclassifications, whereas a consistently BM negative
incorrect predicted compound is classified into the group of 50 Ziprasidone 146939-27-7 Ames positive

misclassifications.

Because the majority of CA-test positive compounds in our
study originates from the Kirkland data compilation, which from
a chemical diversity point of view resembles the Serra data, it
is not surprising that our ML model performs particularly well

a Genotoxicity information taken from Snyder et dl0f. ® Ames, Ames
test; BM, mouse bone marrow micronucleus test; N/A: not available.

in only five cases (not listed). Mechanistic information on a
possible mode of action of chromosome-damage induction of
the 15 known genotoxic compounds is limited. Most of the

in terms of sensitivity on the latter data set. The development compounds do not contain structural alerts for mutagenicity,
of prediction models for diverse data sets, such as those in oursuggesting that they do not primarily act genotoxic through

study, is generally considered to be problema&6),(and in
theory, the construction of two local models (i.e., one for each

direct drug-DNA interaction. A review of other mutagenicity
test results obtained for the false-negative-predicted compounds

data set) would have been favorable. Such an approach,shows 5 out of 14 compounds (no mutagenicity data were

however, is currently not feasible, because only few CA-test
positive data for drug-like compounds are publicly available,
and sufficiently large training sets for CA-test modeling,

therefore, need to be compiled from structurally diverse
compounds, as has been done in our study.

Given the structural diversity of our training set used for

model construction, we investigated whether our ML model
performed differently on the two underlying data sets. As a

available for imipramine) were also tested positive in an Ames
test, suggesting a genotoxic potential that was missed by our
ML model. Surprisingly, 9 out of the 14 compounds were tested
positive uniquely in the CA-test, whereas they yielded negative
results in the Ames-test and the in vivo mouse micronucleus
test (Table 7). This suggests that the positive CA-test result of
these misclassified compounds might not be due to an inherent
genotoxic potential but instead induced by biologically non-

measure for predicting accuracy, we determined the number of significant effects detected by this test system.

misclassifications for each compound of both data sources in

As outlined before, nonphysiological stimuli during cell

50 independent evaluations. This means that an ML model wasculture can lead to structural chromosome aberratigpdt(is
generated 50 times, and in each run, the classification resultlikely that other yet unknown mechanisms that are not directly

(i.e., true or false) was recorded for each compound. A
compound that was correctly predicted in all of the 50 runs

related to the chemical structure can result in a (biologically
not significant) positive result in the CA-test. Because these

would, thus, be categorized with zero misclassifications, whereasartificial effects are not directly related to the chemical structure
a compound showing 50 misclassifications would have always of the compound, they are not amenable to modeling and,
been predicted incorrectly. The results of this exercise are showntherefore, automatically decrease the predictivity of computa-

in Figure 1. As can be seen, almost 70% of all compounds from
the pharmaceutical clas$8) were correctly predicted in 50 out
of 50 evaluations (i.e., zero misclassifications). In comparison,

tional models applied to such data.
In conclusion, our data show that the chromosome-damaging
potential of pharmaceuticals can be predicted using machine-

the same was true for less than 60% of the less drug-like classlearning approaches, albeit with lower predictivity than that

(10). However, approximately 10% of pharmaceuticals were
never predicted correctly (50 misclassifications), which to a
slightly higher degree was also true for the Kirkland compounds.

Altogether, it can be stated that compounds from the pharma-

previously reported for industrial chemicalk3}. Nevertheless,

the inclusion of a significant amount of pharmaceutical com-
pounds into our model and the concomitant expansion of the
chemical space covered by the model now makes it a potentially

ceutical class were predicted with higher accuracies than thoseuseful tool that can be incorporated in compound selection

from the less drug-like class.

processes during early phases of drug development. A balanced

Of the 20 compounds from the pharmaceutical class that were prediction accuracy of #075% is sufficiently high during these

consistently misclassified in all 50 evaluations, 15 are false

developmental phases to filter out potential genotoxic com-

negatives, that is, a chromosome-damaging potential was missedpounds. Together with an experimental screening test (e.g., the
These 15 false negatives are listed in Table 7. Compounds weren vitro micronucleus test) for the follow-up testing of com-
incorrectly classified as chromosome-damaging (false positives)pounds with a negative call, such a tool can significantly
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contribute to a more targeted development of non-genotoxic drug(16) Snyder, R. D., Pearl, G. S., Mandakas, G., Choy, W. N., Goodsaid,

i iti i i F., and Rosenblum, I. Y. (2004) Assessment of the sensitivity of the
candidates. In addition, given the high concordance between computational programs DEREK. TOPKAT and MCASE in the

the in vitro micronucleus test and the CA-test, data obtained prediction of the genotoxicity of pharmaceutical molecuesiron.
during the experimental screening of drug compounds could Mol. Mutagen. 43143-158.

be fed back in order to train improved models solely based on (17) anydeli, E%.dD-,h and Greetn, JMV\{- t(2301) ﬁ\grgi/éelw fééhe genotoxicity

drug-like compounds. of marketed pharmaceuticaliital, Res. 468.157.09. o
9 P (18) Sadowski, J., and Kubinyi, H. (1998) A scoring scheme for discrimi-
nating between drugs and nondrugsMed. Chem. 413325-3329.
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